TEEE

TCME 2002 Ry

FAST MUSIC RETRIEVAL USING POLYPHONIC BINARY FEATURE VECTORS

Hidehisa Nagano, Kunio Kashino and Hiroshi Murase

NTT Communication Science Laboratories, NTT Corporation
3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198 Japan
{nagano, kunio, murase } @eye.brl.ntt.co.jp

ABSTRACT

We propose a method for retrieving similar music from a
polyphonic-music audio database using a polyphonic audio
signal as a query. In this task, we must consider similar-
ities among polyphonic signals of the music, and achieve
quick retrieval. Therefore, we first introduce the polyphonic
binary feature vector to represent the presence of multiple
notes. This feature is suitable for the search based on the
similarities among polyphonic audio signals. Then, we pro-
pose a new search method, which is quicker than the ex-
haustive use of DP matching. The search is accelerated us-
ing a “similarity matrix” to limit the search space. Exper-
iments using a test database containing 216 music pieces
show that the search accuracy of the proposed feature is
89%, which is approximately 26% higher than that of the
conventional spectrum feature. It is also shown that the
new search method retrieves similar music without sigmf-
icant accuracy degradation as well as the exhaustive search
does and the computational complexity of the new search
method is about 1/4 that of exhaustive search.

1. INTRODUCTION

This paper proposes a music retrieval method based on poly-
phonic music similarity of audio signals. Polyphonic music
search from a polyphonic audio signal database (DB) using
a polyphonic audio signal as the query extends the applica-
bility of music retrieval. For example, it will enable us to
retrieve similar music from audio DBs using music pieces
on CDs as queries, which are polyphonic signals. In addi-
tion, we aim at retrieving not only the same segments but
also “similar” ones, such as re-takes, the music played on
other instruments, with a different tempo, or transposed.
Music retrieval is an important application of informa-
tion retrieval and several search methods for it have been
proposed [1, 2, 3, 4]. These methods can be divided into
two groups according to their objectives. One aims at re-
trieval of segments that are almost the same as the query by
a signal level comparison [1]. In this case, audio signal fea-
tures, such as the spectrum feature, are used for the search.
The other group aims at retrieving segments “similar” to
the query in some way, such as having the same melody or
a rearrangement of the music. Such methods require fast re-
trieval of similar segments using musical queries other than
audio signal features. For retrieval based on melody similar-
ity, Ghias et al. proposed monophonic melody matching us-
ing a melodic contour that represents the melody as strings

of relative pitch ("U’, ’D” and ’S’) and showed its effective-
ness for retrieval with queries by humming [2]. The melodic
contour is too simple to represent the complete melody, but
it serves as a valid feature for the classification of the mono-
phonic melodies and is efficient for music retrieval based on
monophonic melody matching. So far, most related works
have also been based on monophonic melody matching.

However, those existing methods are not directly appli-
cable to our music retrieval task. Audio signals of music
pieces considerably differ, even if they are the same music
in a title, due to re-takes, performance speed, and changes
of instruments, for example. Therefore, features directly
related to the audio signals are not always appropriate for
retrieval. Moreover, applying monophonic matching to our
task would require the complicated extraction of multiple
monophonic melody lines from the polyphonic audio sig-
nal. In addition, time consuming melody matching among
multiple melody lines must be considered. Therefore, we
propose a polyphonic binary feature vector as a simple fea-
ture representation of the polyphonic audio signal that is
suitable for classification of polyphonic music signals and
their matching. Like Ghias’s melodic contour, the objec-
tive of this feature is not the complete representation of the
music but the classification of the music for retrieval. This
feature vector is a simple representation of the polyphonic
chord and suitable for quick retrieval. We also, then, pro-
pose a fast search method for retrieval using this feature.

The rest of this paper is organized as follows. Sec-
tion 2 overviews the retrieval scheme. Section 3 proposes
the polyphonic binary feature vector, and Section 4 intro-
duces the fast search method. Section 5 then shows some
experimental results. Finally, Section 6 concludes the pa-
per.

2. OVERVIEW

Fig. 1 overviews the search flow, where all segments sim-
ilar to the query signal on the stored signal are being de-
tected. The query signal and the stored signal are poly-
phonic acoustic signals of music. First, we extract feature
vectors from the frequency spectrum and prepare them as
feature vector strings for searching. Each component (sym-
bol) of the feature vector string corresponds to a feature vec-
tor. Then, we search for all the substrings of the length w
that are similar to the query feature vector string. The length
w 1s assigned as the window width on the stored feature vec-
tor string. To cope with temporal stretching and shrinking
of signals, we measure the similarities between feature vec-

query signal stored signal

et e

=
Tl

frequency analysis &
feature vector extraction

] .

H v window >

vy uery feature ——
@39@”3’,—5{,1"9 N Y Y A Y

stored feature
search similar segment

feature

vector string

Figure 1: Overview of searching.

tor strings by DP matching based on the similarities among
feature vectors. Formally, we search for all substrings of
the stored feature vector string with the length w such that
its normalized similarity with the query feature vector string
given by DP matching is larger than the search threshold s;.

3. POLYPHONIC BINARY FEATURE VECTOR

As a simple feature representation suitable for a search like
melodic contour but also applicable to polyphonic signal,
we propose the polyphonic binary feature vector (hereafter,
the PBFV). The PBFV is a simple representation of the
presence of notes from multiple instruments by each binary
vector element and suitable for the search based on similar-
ity of the presences of the notes.

During the extraction of the PBFV, beat tracking and
harmonics elimination are performed. A PBFV is extracted
for each beat interval. Beat tracking is done to shorten the
feature vector string. In addition, it is also expected that this
beat tracking absorbs the shrinking and stretching of the au-
dio signal. Harmonics elimination is adopted, since differ-
ent harmonics yielded by different instruments and dynam-
ics can drastically alter the frequency spectrum. However,
the detailed processes of beat tracking and harmonics elimi-
nation are not the focus of this paper. Therefore, we explain
these processes roughly for want of space.

3.1. Audio feature extraction

First, we process audio files through a band pass filter bank,
and construct a frequency-power spectra profile from the au-
dio signal of the music. The bank consists of 336 filters that
are equally spaced in the log-frequency axis from 75 to 9600
Hz. The analysis frame length currently used is 44 ms with
a shift of 11 ms.

3.2. Beat tracking

Next, we extract the beats based on the audio signal
changes [5]. The beat positions are assigned at points where
the acute power change concentrates in the spectra.

3.3. Harmonics elimination

Local peaks of the power in the frequency axis are marked
on each beat interval on the spectra. The extracted peaks
are subsequently assigned to the nearest corresponding fre-
quency on the 12-note Western scale, and in this way a list
of “component presences” is constructed for each beat in-
terval.

Harmonics elimination is done by scanning the compo-
nents on the component presence list from low frequency

to high. The components are deemed to be fundamental
only if a certain number of their expected harmonics are
also present on that beat interval, and other components are
eliminated.
3.4. Binary feature vector representation
From the component presence list, we extract the PBFV.
Here, the components in the component presence list in a
beat interval are placed into a 12-element binary feature
vector, the PBFV, that represents the notes on the Western
musical scale. Each slot in these vectors holds informa-
tion about note-presence (value of 1) or note-absence (value
of 0). For example, if the components in the component
presence list are A (220Hz), E (330Hz), A (440Hz) and C
(523Hz), then the components recorded will be simplified
to A, C, E” and will yield the binary vector 00001000100
17, where the binary vector presents the presence of each
note in the order "G#GF#FED#DC#CBA#A.” Each PBFV
1s assigned to a unique symbol. In this way, these extracted
symbols compose the the feature vector string.

The similarity between the PBFV x = (21,22, ... ,Z12)
andy = (y1,¥2,... ,y12) is defined as

12
k=1 Uk

12 ?
2o (@i +yj)

where up = 2ifx; = yr = L,elseur, = 0. If x =y = 0,
the similarity 1s 1.

This PBFV can represent polyphonic note presence com-
pactly, and the similarity is suitable for the polyphonic mu-
sic comparison. In addition, transposed music can be re-
trieved simply by shifting the PBFVs of the query.

4. FAST SEARCH METHOD

Here, we propose a fast method for the search overviewed
in Section 2. The conventional exhaustive search method,
in which DP matching with all substrings of the stored fea-
ture vector string is done while shifting the window by a
symbol (feature vector), could be used. However, for quick
retrieval, we propose a faster search method. The main idea
for acceleration is to match only the substrings of the stored
feature vector string that include symbols similar to those of
the query feature vector string while reducing the computa-
tional costs of DP matching. As explained in the rest of this
section, the proposed search method guarantees a search re-
sult identical to that obtained by the exhaustive search when
the same symbol similarities are used, and achieves even
faster search when the “sparse” definitions of the similari-
ties are used.

First, we introduce a similarity matrix for symbols of
feature vectors. The value of the (u,v) component of the
similarity matrix is the similarity between symbols » and v.
This similarity matrix is also used in the exhaustive search
method to look up the similarity between symbols. We fur-
ther accelerate the search by making the similarity matrix
sparse. Here, we call the matrix sparse when almost all val-
ues of the matrix components are 0. The matrix is made
sparse, for example, by threshold operation on the matrix
components. Here, let T = [cr(1),¢7(2),..., er(n)] be
the stored feature vector string, and P = [cp(1),cp(2), ...,

1)

cp(m)] be the query feature vector string. Again, w is the
length of the window.

Fig. 2 overviews the proposed search method. First, the
window is moved to the place that includes a symbol sim-
ilar to one of P as shown in Fig. 2(a). Then, the stored
feature vector and the substring in the window are matched
as shown in Fig. 2(b). Fig. 2(b) shows the graph used for
DP matching, where the horizontal axis and the vertical axis
correspond to P and the substring of T in the window, re-
spectively. The borderlines adjust the survival paths and
avoid immoderate correspondences of symbols. Especially
advantageous is that, in this matching, the survival paths to
white points in Fig. 2(b) are not calculated and their simi-
larities are assumed to be 0. Thus, the computational cost
is reduced compared with conventional DP matching. Now,
we describe the proposed search method in detail.

Proposed Search Method

(1) For each kind of symbol, check where it appears
onT.

(2) For d from 2 to z, repeat (3). Here, 2 is the great-
est integer less than (1 — s¢)(m + w) + 2.

(3) For 4 from 1 to min(m,d — 1), letj = d — 1.
If the lattice point (7, j) is between the borderlines in
Fig. 2(b), adjust the window to the places on T so
that the similarity between ¢p (i) and the j-th symbol
of the window is larger than 0 as shown in Fig. 2(a).
If the adjusted place has not been matched, the sub-
string and P is matched as shown in Fig. 2(b) and this
place is registered as matched. After the match, if the
similarity of the adjusted place is larger than the sy,
this place is detected as a similar segment. o

In Step (3), matching is performed when the window is ad-
justed to the unmatched place. Therefore, the similarity be-
tween cp(x) and the y-th symbol of the substring is 0 if the
values of x and y have previously been used as the values
of 7 and j. Then, the similarity of such correspondence of
symbols, i.e., the similarities of the paths to the white points
in Fig. 2(b) 1s 0 and not calculated.

In addition, we reduce the computational cost by the
“omission of hopeless paths.” If the upper bound value of
similarities of the paths through a point, which is given by
the similarity of the survival path arriving at this point and
the length of the rest the paths, is not larger than the search
threshold, further search on paths through this point is omit-
ted.

For the evaluation of the computational complexity, we
measured the number of points whose survival path must
be calculated. We call such points computing points and
the computation of a survival path at a point a path com-
putation. The path computation at a point selects the path
with the largest similarity from the paths that connect ad-
jacent points to that point, and the complexity of this com-
putation is constant. Assuming that the number of points
between the borderlines in Fig. 2 is ¢, the number of path
computations of the conventional DP matching is also ¢ and
the total number of the path computations for the conven-
tional exhaustive search is ¢(n — w + 1). For the pro-
posed search method, the number of path computations in

query feature

vector string ' stored feature
1 : m Leee j eeew vector string

ors i s —]‘
LI T Il("-u’lll [T TTTIf-? [1

similar symbols adjust window position

(a) Adjustment of window position

wiANAT . (m, w)
I BNy ¢ S Find the path to (n, w) with
xty=d =] ‘| the largest similarity.
\
> borderline for
b adjusting path
2 ™ current (i, /)

m

Similarities of all paths to white points are 0.

(b) Matching with computational reduction
Figure 2: Overview of proposed search method.

the worst case is the same, but the number in the average
case is (¢ — Y ;_, p4y)(n — w + 1), assuming the probabili-
ties that the similarity of the two symbols are 0 are constant
pq. Here, the reduction of the number of path computations
by bounding the value of d with 2 in Step (2) and omitting
hopeless paths in Step (3) is not taken into account, although
the number would be even less when it is considered. From
this formula, we can see that the sparser the similarity ma-
trix is, the more efficient the proposed method becomes.

Until now, fast algorithms for “exact string matching”
and “approximate string matching” have been proposed [6].
However, the proposed search method aims to search “sim-
ilar” strings that stretch and/or shrink. Thus, it utilizes DP
matching based on the similarities among symbols. These
are the characteristics of our approach.

5. EXPERIMENTS

We performed two search experiments: one to evaluate the
accuracy of the search using the PBFV, and the other to eval-
uate the efficiency of the proposed search method in reduc-
ing computational cost.

5.1. Evaluation of features

First, we compared the search accuracy of the PBFV with
the conventional spectrum feature. For the comparison, we
performed trial retrieval of similar music pieces from a DB
of audio signals. The test DB contained audio signals of
216 polyphonic music pieces of various genres, such as pop,
classical, and instrumental. It was totally about 480-min
long. As query signals, we chose 15 segments of audio sig-
nals of three-part ensemble music so that the lengths of the
query feature vector strings of the PBFV came to 70, and
we performed a trial search for each query. The average
length of the query signals was about 19 s. The DB includes
the eight similar pieces having the same title as each query.
The variations of these eight pieces are the original, a trans-
position, a change in tempo, a change of instruments, and
re-takes of these. These variations were actually performed
by musicians and recorded. The instruments used for these

Table 1: Search accuracy of features.

| Feature [Spectrum | PBFV (proposed) |

63% | 89% |

| Accuracy |

performances were piano, flute, oboe, bassoon, violin, and
cello. In the change of instruments, one or two parts were
played on other instruments. The query signal was chosen
from the segments of the piece of the original. For each
trial, we assumed that these eight pieces with the same title
are to be retrieved, which we call the target pieces.

For the search, we extracted two kinds of feature vector
strings. One employed the PBFVs and the other employed
the spectrum feature. Then, we performed the search in
Section 2 by the conventional exhaustive search method for
both features. The spectrum feature was extracted with the
filter bank in Section 3.1, but for a reasonable search time, it
was extracted every 100 ms with the analysis frame length
of 400 ms. Then, an LBG-based VQ with code book size of
4096 was employed for the comparison with the PBFV. We
let the similarities of the spectrum features be 1 if they had
the same VQ code and 0 otherwise. For the PBFV, the simi-
larities defined in Eq. (1) were used, and 12 kinds of shifted
queries were searched. In this experiment, for the PBFV, the
total length of the stored feature vector strings was 94744.
In this search experiment, we set the window width w the
same as the length of the query string, and in DP matching,
the survival path was adjusted so that |z — y} < 0.06m for
any point (z,y) on the path.

The search accuracy was evaluated by the average val-
ues of precision and recall rates when they were adjusted to
be the same by choosing the search threshold for each query.
The precision rate and recall rate are defined as #(correct
retrieved pieces)/#(retrieved pieces) and #(retrieved target
pieces) /#(target pieces), respectively. A piece is retrieved if
at least one similar segment is detected on it.

Table 1 shows the results. Accuracy is the average accu-
racy of 15 retrievals. We can see that the average accuracy
for the PBFV is 89%, approximately 26% higher than that
for spectrum feature.

5.2. Evaluation of search methods

Another experiment was performed to compare the com-
putational complexities and accuracy of the search method
proposed in Section 4 with those of the exhaustive search
method. In this experiment, the DB, the queries and the tar-
get pieces were same with Section 5.1. We performed these
retrievals using both search methods.

For evaluation of the computational complexity, we eval-
uated the number of the path computations needed for the
search by a query, when the precision and recall rates were
the same.

For both methods, the PBFVs were used, and 12 kinds
of shifted queries were searched. For the exhaustive search
method, the similarity matrix with the similarities of PBFVs
defined as in Eq. 1 were used. For the proposed method,
we used a sparse similarity matrix obtained by making the
component value O when it was smaller than the threshold

Table 2: Search method evaluation results.

Method Exhaustive Proposed
Search Method

Accuracy 89% 86%
#path computations | 457962240 | 119386645

value of 0.85. The window width setting and the adjustment
of the survival paths are same as in Section 5.1.

Table 2 summarizes the results. Accuracy is the average
accuracy of 15 retrievals. The #path computations shows
the average value of the numbers of path computations. The
proposed method can retrieve similar music with about 1/4
the path computations of the exhaustive search with only
a small amount of accuracy degradation due to the use of
a sparse similarity matrix. The “omission of the hopeless
paths” described in Section 4 can be employed for the ex-
haustive search, but the #path computations in that case was
248848157, about twice as large as that for the proposed
method.

6. CONCLUSIONS

We proposed the polyphonic binary feature vector (PBFV)
as the feature suitable for retrieval of similar polyphonic
music. In addition, a fast search method for this retrieval
was proposed. Experimental results show that average re-
trieval accuracy using the PBFV is 89%, approximately 26%
higher than that of the spectrum feature and the average
computational complexity of the proposed search method
is about 1/4 that of exhaustive search.

For future work, we plan to confirm the effectiveness of
our method with a larger DB and various kinds of music. We
will also investigate the construction of a similarity matrix
for faster and more accurate retrieval.

7. ACKNOWLEDGEMENTS

The authors thank Brian Toth, Dr. Kenichiro Ishii, and
Dr. Noboru Sugamura for their help and encouragement.

8. REFERENCES

[1] K. Kashino et al., “Time-series Active Search for Quick
Retrieval of Audio and Video,” in Proc. of ICASSP-99,
1999.

[2] A. Ghias et al.,, “Query By Humming: Musical Infor-
mation Retrieval in An Audio Database,” in ACM Mul-
timedia '95, 1995.

[3] L. A. Smith et al., “Sequence-Based Melodic Compar-
ison: A Dynamic Programming Approach,” in Melodic
Similarity : Concepts, Procedures, and Applications,
W. B. Hewlett et al., Eds. MIT Press, 1998.

[4] N. Kosugi et al., “Music Retrieval by Humming: Us-
ing Similarity Retrieval over High Dimensional Feature
Vector Space,” in Proc. of IEEE PACRIM 99, 1999.

[5] K. Kashino, Computational Auditory Scene Analysis
Jor Music Signals, Ph.D. thesis, Univ. of Tokyo, 1994.

[6] R. Baeza-Yates et al., Modern Information Retrieval,
Addison Wesley, 1999.

