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Abstract

The problem of vision-based robot positioning and
tracking is addressed. A general learning algorithm
is presented for determining the mapping between
robot position and object appearance. The robot is
first moved through several displacements with re-
spect to ils desired position, and a large set of ob-
ject images is acquired. This image set is compressed
using principal component analysis to obtain a low-
dimensional subspace. Variations in object itmages
due to robot displacement are represented as a com-
pact parametrized manifold in the subspace. While
postlioning or tracking, errors in end-effector coor-
dinates are efficiently computed from a single bright-
ness image using the parametric manifold represen-
tation. The learning component enables accurate vi-
sual control without any prior hand-eye calibration.
To demonsirate its generality, the learning algorithm
1s also used to develop a real-time object recognition
system. Several experiments are reporied that involve
tasks pertinent to industrial applications.

1 Introduction

For a robot to be able to interact in a precise and
intelligent manner with its environment, it must rely
on sensory feedback. Vision serves as a powerful com-
ponent of such a feedback system. It provides a rich-
ness of information that can enable a manipulator
to handle uncertainties inherent to a task, react to
a varying environment, and gracefully recover from
failures. A problem of substantial interest and rele-
vance to robotics is visual positioning/tracking; the
ability of a robot to either automatically position it-
self at a desired location with respect to an object,
or accurately follow an object as it moves along an
unknown trajectory.

This paper presents a new approach to visual posi-
tioning and tracking. Before we proceed to describe
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our approach, a brief review of previous work is in or-
der. Previous tracking methods can be broadly classi-
fied into two categories; (a) feature/model based and
(b) learning based. The first category uses image
features to estimate the robot’s displacement with
respect to the object. The goal is to find the ro-
tation and translation that must be applied to the
end-effector to bring the features back to their de-
sired positions in the image. Image features used
vary from geometric primitives such as edges, lines,
vertices, and circles [Weiss et al. 87] [Feddema et
al. 91], [Koivo and Houshangi 91] [Hashimoto et al.
91] to optical flow estimates [Papanikolopoulos et al.
91] [Luo et al. 88] and object location estimates ob-
tained using stereo [Allen et al. 92]. The control
schemes used to drive the robot to its desired posi-
tion vary from simple prediction algorithms employed
to achieve computational efficiency, to more sophisti-
cated adaptive self-tuning controllers that account for
the dynamics of the manipulator. Many of the above
methods require prior calibration of the vision sen-
sor’s intrinsic parameters (e.g. focal length) as well
as its extrinsic parameters (rotation and translation
with respect to the manipulator).

The second category of positioning/tracking meth-
ods includes a learning component. In the learn-
ing stage, the mapping between image feature lo-
cations and robot coordinates is generated prior to
positioning/tracking (off-line). This mapping is then
used to determine, in real-time, errors in robot posi-
tion/velocity from image feature coordinates. This is
generally accomplished without any explicit knowl-
edge of the object’s geometry or the robot’s kine-
matic parameters. In addition, calibration of the
vision sensor is not required as long as the sensor-
robot configuration remains unaltered between learn-
ing and tracking. Methods in this category differ
from each other primarily in the type of learning
algorithm used. The learning strategies vary from
neural-like networks [Kuperstien 87] [Mel 87] [Miller
89] [Walter et al. 90] to table lookup mechanisms
such as the cerebellar model articulation controller
(CMACQC) [Albus 75] [Miller 87].



Here, we propose a new framework for learning-based
visual servoing. Our approach differs from previous
ones in two significant ways; (a) it uses raw bright-
ness images directly without the computation of im-
age features, and (b) the learning algorithm intro-
duced is based on principal component analysis' (see
[Oja 83]) rather than a large input/output mapping
network. During the learning stage, a sizable image
window is selected that represents the appearance of
the object when the robot is in the desired position.
A large set of object images is then obtained by incre-
mentally perturbing the robot’s end-effector (hand-
eye system). The image set is compressed using prin-
cipal component analysis to obtain a low-dimensional
subspace, called eigenspace. Variations in object im-
ages due to robot displacements are represented in
the form of a parametrized manifold in eigenspace.
The advantages of using this representation are dis-
cussed in the paper.

In the positioning or tracking application, each new
image is projected to the eigenspace and the location
of the projection on the parametrized manifold de-
termines the robot displacement (error) with respect
to the desired position. Positioning and tracking are
achieved without prior knowledge of the object’s ge-
ometry or reflectance, the robot’s kinematic parame-
ters, and the vision sensor’s intrinsic and extrinsic pa-
rameters. We conclude with experiments conducted
using an Adept robot. The accuracy and efficiency of
the proposed method are demonstrated using three
sample applications; (a) the assembly of electronic
devices on a circuit board, (b) the insertion of a peg
in a hole; and (c¢) the tracking of a manufactured part
moving on a turntable.

Though we have focused primarily on the problem of
visual servoing, the learning and recognition frame-
work presented here can be applied to a variety of vi-
sion problems. As an example, we present a real-time
object recognition system with 20 complex objects in
its database. A complete recognition and pose esti-
mation cycle takes less than 1 second on a Sun IPX
workstation without the use of any customized hard-
ware.

2 The Approach

Figure 1 shows the hand-eye system we have used
to demonstrate visual positioning and tracking. The
manipulator used is a 5 degree-of-freedom Adept
robot that is interfaced with a Sun IPX workstation.
A CCD camera is mounted adjacent to the robot grip-

1In machine vision, principal component analysis has been
applied to problems such as edge detection [Hummel 79] and
face recognition [Turk and Pentland 91].

per and provides images of the tracked object. The
end-effector’s position (translation and rotation) can
be described in any frame of reference attached to
the robot. Without loss of generality, we denote the
end-effector position by the generalized coordinates:

T
q = [(Ila(I?, """ )qm] (1)

where m represents the end-effector degrees of free-
dom (DOF) used in the positioning or tracking ap-
plication. The imaging optics is selected such that
the tracked object occupies a large section of the im-
age. The image area used as visual input is a fixed
window, within the complete image, which includes
sufficient object detail (for example, see Figure 2) 2.
This image window is written as a vector i by reading
brightness values from it in a raster scan fashion:

i= [i1, 2, oy in] T (2)

Figure 1: The hand-eye system used for visual po-
sitioning and tracking. The end-effector includes a
gripper, an image sensor, and a light source.

Our objective is to compute off-line the mapping be-
tween the robot end-effector coordinates and object
images. The brightness image 1 for any given robot
position q depends on the three-dimensional shape
of the object, its reflectance properties, the illumina-
tion conditions, and the end-effector coordinates with
respect to the object. Shape and reflectance are in-
trinsic properties of a rigid object that do not change
during positioning or tracking. In order to overcome
the effects of possible illumination variations, we have

2 Alternatively, the contents of several windows of fixed sizes
and shapes, scattered in the image, can be concatenated and
treated as a single window.



used a light source that is also mounted on the end-
effector. In our setup (see Figure 1), the source is one
end of a fiber-optic cable connected to a strong light
source at the other end. This hand-source is the dom-
inant source of object illumination 3, and minimizes
the effects of ambient illumination.

Figure 2: Each image vector 1 is obtained by reading
pixel brightness values from an image window (black
box) of fixed size and position.

This leaves us with the position and orientation of
the end-effector with respect to the object. We de-
fine the nominal or desired image i as the one pro-
duced when the robot 1s in the desired position and
orientation q with respect to the object. For conve-
nience, we define all robot displacements q with re-
spect to q, i.e. a coordinate system with q = 0. For
any given positioning/tracking application, one can
define a task workspace as the range of permissible
end-effector displacements q with respect to q. This
in turn corresponds to a range of visual appearances
that we refer to as the visual workspace, i(q). It is
this mapping, i(q), that we wish to learn. Once it has
been learned, the robot displacement q with respect
to the desired position can be determined from any
image by inverse mapping. As we will see shortly, this
inverse mapping is continuous and can be achieved
using raw images without the computation of image
features such as edges, lines, corners, circles, or opti-
cal flow estimates.

Several advantages result from the proposed ap-
proach. (a) The three-dimensional shape and re-
flectance properties of the object need not be known
or computed. The effects of shape and reflectance are
embedded in the raw brightness images. (b) Robot
displacements are computed using images rather than
image features. This not only saves computations
but also avoids detection and localization errors in-
troduced by feature extraction algorithms. (¢) The

3This illumination method is effective not only for the ap-
proach described in this paper but also for visual servoing
methods that rely on robust computation of image features.
Placing the source close to the sensor also minimizes shadows
in the image.

extrinsic and intrinsic parameters of the camera are
not used. Therefore, it is not necessary to calibrate
the camera with respect to the hand or any other co-
ordinate system; a process that is known to be cum-
bersome. All that is required is that the camera be
positioned on the hand such that a descriptive image
of the object is available.

3 Learning the Visual Workspace

We now present the learning approach used to deter-
mine a direct mapping between the generalized robot
coordinates and object images. Later, we show how
this mapping can be effectively used for positioning
and tracking purposes.

3.1 Acquiring Learning Images

All images of the object taken by varying the robot
position are of the same size, the size of the image
window used (Figure 2). The window is selected such
that it remains on the object even while robot coor-
dinates are varied during the learning process. This
ensures that the positioning and tracking stages are
unaffected by the background of the object, avoiding
the use of a segmentation algorithm. It is reason-
able to assume that in a positioning or tracking ap-
plication errors in robot position are relatively small.
Hence, the range of discrete manipulator positions
used to obtain the image set may be confined to a
small area around the desired position q. We denote
the image corresponding to the discrete position qj,
as i;.

Prior to learning, the imaging sensor is linearized
using a simple calibration procedure. This ensures
that image brightness is proportional to scene radi-
ance. We would like our learning process to be un-
affected by variations in the intensity of illumination
or the aperture of the imaging system. This can be
achieved by normalizing each acquired image such
that the total energy contained in the image is unity:
i; = i;/ || i; || Let the number of discrete samples
obtained for each DOF [ be R;. Then the total num-

ber of imagesis M = H?}l R;. The complete image
set: R - i
{11, ceee. Jgy e v} (3)

is a sampling of the visual workspace. The image i
corresponding to the desired robot position q = 0 is
also included in this set.

3.2 Computing Eigenspaces

Images in the above set tend to be correlated to
a large degree since end-effector displacements be-
tween consecutive images are small. Our first step



is to take advantage of this correlation and compress
the large set to a low-dimensional representation that
captures the key appearance characteristics of the vi-
sual workspace. A suitable compression technique
is based on principal component analysis [Oja 83],
where the eigenvectors of the image set are computed
and used as orthogonal bases for representing individ-
ual images. Though, in general, all the eigenvectors
of an image set are required for perfect reconstruc-
tion of any particular image, only a few are sufficient
for positioning or tracking applications. These eigen-
vectors constitute the dimensions of the eigenspace,
or image subspace, in which the visual workspace is
compactly represented.

First, the average ¢ of all images in the set is sub-
tracted from each image. This ensures that the eigen-
vector with the largest eigenvalue represents the sub-
space dimension in which the variance of images is
maximum in the correlation sense. In other words,
1t is the most important dimension of the eigenspace.
An image matrix is constructed by subtracting ¢ from
each image and stacking the resulting vectors column-
wise:

Pé{il—c,ig—c, ...... ,iM—c} (4)

P is NxM, where N is the number of pixels in each
image and M is the total number of images in the set.
To compute eigenvectors of the image set we define
the covariance matriz:

Q2ppT (5)

Qis N x N, clearly a very large matrix since a large

number of pixels constitute an image. The eigen-
vectors e; and the corresponding eigenvalues A of
Q are to be determined by solving the well-known
eigenstructure decomposition problem:

Arer = Qe (6)

The calculation of the eigenvectors of a matrix
as large as Q is computationally intensive. Fast
algorithms for solving this problem have been a
topic of active research in the area of image cod-
ing/compression and pattern recognition (see [Oja
83]). We have used a fast implementation [Murase
and Nayar 92] of the algorithm proposed by Mu-
rakami and Kumar [Murakami and Kumar 82]. On a
Sun IPX workstation this implementation enables us
to compute, for example, 20 eigenvectors of a set of
100 images (each 128x128 in size) in about 3 minutes,
and 20 eigenvectors of a set with 1000 images in less
than 4 hours.

The result of eigenstructure decomposition is a set
of eigenvalues { A | & = 1,2,..., K} where {A; >

Ay > .l > Ak }, and a corresponding set of or-
thonormal eigenvectors {ex | £ =1,2,..., K}. Note
that each eigenvector is of size N, i.e. the size
of an image. These K eigenvectors constitute our
eigenspace; it is an approximation to the complete
eigenspace with N dimensions. In our experiments
we have used eigenspaces of less that 20 dimensions.

3.3 Parametric Eigenspace
Representation

We now represent, the visual workspace as a function
of the robot coordinates q. The result is a manifold in
the K-dimensional eigenspace computed above. This
representation is called the parametric eigenspace®.

Each learning sample 1] in the image set is projected
to the eigenspace by first subtracting the average im-
age ¢ from it and finding the inner product of the
result with each of the eigenvectors (dimensions) of
the eigenspace. The result is a point f;:

f; = [e1, ez, ..... e ]t (ij — ¢) (7)

By projecting all the learning samples in this manner,
a set of discrete points are obtained in eigenspace.
Since consecutive object images are strongly corre-
lated, their projections in eigenspace are close to one
another. Hence, the discrete points obtained by pro-
jecting all the learning samples can be assumed to lie
on a manifold that represents all possible object ap-
pearances for all possible manipulator coordinates.
The discrete points are interpolated to obtain this
manifold. In our implementation, we have used a
standard quadratic B-spline interpolation algorithm
[Rogers 90]. The resulting manifold can be expressed
as:

f(a) = f(q1,q92, ... v qm) (8)

This manifold is in a low-dimensional space and
therefore 1s a compact coniinuous representation of
object appearance as a function of manipulator co-
ordinates q. In practice, the number of end-effector
DOFs used for positioning and tracking can vary.

The above representation has an important property.
Consider two images ir and i, that belong to the
image set used to compute an eigenspace. Let the
points f, and f; be the projections of the two im-
ages in eigenspace. It is well-known in pattern recog-
nition theory [Oja 83] [Murase and Nayar 92] that
the distance between the two points in eigenspace is
an approximation to the correlation between the two

4 The parametric eigenspace representation was introduced
in [Murase and Nayar 93] for object recognition and pose
estimation.



brightness images:
i =3 1P~ £ - £ | (9)

The closer the projections are in eigenspace, the more
similar are the images in I2. Therefore, the eigenspace
is optimal for computing the correlation between im-
ages. It is this property that motivates us to develop
a learning methodology based on principal compo-
nent analysis.

4 Visual Positioning

We now discuss the automatic positioning of a ma-
nipulator at its desired coordinates q with respect to
the viewed object. A brute force solution would be
to compare an unknown input image with all images
corresponding to different discrete learning coordi-
nates. Such an approach is equivalent to exhaustive
template matching. Clearly, this is impractical from
a computational perspective given the large number
of learning images obtained. Further, the input im-
age may not correspond exactly to any one of the
learning images, 1.e. the current displacement may
lie in between the discrete ones used for learning.

The parametric eigenspace representation enables us
to accomplish image-displacement mapping in a very
efficient manner. Since the eigenspace is optimal for
computing the correlation between images, we can
project the current image to the eigenspace and sim-
ply look for closest point on the manifold. Also, since
the manifold is continuous, displacements that are
not exactly the ones used for learning can be esti-
mated.

Let the robot’s current position be q. and the cor-
responding normalized image be ic. The average ¢
of the learning set is subtracted from i, and the re-
sulting vector is projected to eigenspace to obtain the
point:

(10)

The positioning problem then is to find the minimum
distance d between f, and the manifold f(q):
d="q"IIf. — f(a) | (11)
If d is within some pre-determined threshold value
(selected based on the noise characteristics of the im-
age sensor), we conclude that the manipulator lies
within the range of coordinates used for learning.
Then, positioning is reduced to finding the coordi-
nate q. on the manifold corresponding to the mim-
mum distance d. In practice, the manifold is stored in
memory as a list of K-dimensional points obtained by

densely re-sampling f(q). The closest point to f. on
f(q) can be determined either by exhaustive search (if
the list of manifold points is small), binary search, or
indexing. In [Nene and Nayar 93] we have developed
an algorithm that results in near-constant search time
of approximately 20 msec on a Sun IPX workstation.
Alternatively, q. can be determined from f, by train-
ing a regularization network of the type described in
[Poggio and Girosi 90].

5 Positioning Experiments

We have conducted several positioning experiments.
For lack of space, we present only two of these re-
sults. All experiments were conducted using the
Adept robot and hand-eye system shown in Figure
1. Figure 4(a) shows a printed circuit board. The
box shown is the image area (128x128 pixels) used
for learning and positioning. Note that the image
is rather complex and includes a variety of subtle
features. Images were acquired using an Analogics
digitizer board. In this experiment, robot displace-
ments were restricted to two dimensions (z and y).
A total of 256 images were obtained by moving the
robot to 16x16 equally spaced discrete points within
a 2cm x 2cm region around the desired position. A
15-dimensional eigenspace was computed using the
256 images. Each learning image was then projected
to eigenspace and the 256 resulting points were in-
terpolated to obtain a manifold with two parame-
ters, namely, z and y. Since we are unable to dis-
play the manifold in 15-D space, we have shown it
(see Figure 4(b)) in a 3-D space where the dimen-
sions are the three most prominent eigenvectors of the
eigenspace. The complete learning process including
image acquisition, eigenspace computation, and man-
ifold interpolation took approximately 11 minutes on
a Sun IPX workstation. The parametric eigenspace is
stored in memory as a set of 251x251 = 63001 points
obtained by resampling the continuous manifold. A
robot displacement (z,y) is stored with each manifold
point.

Next, the accuracy of the positioning algorithm was
tested. In these experiments, the robot was displaced
by a random distance from its desired position. The
random positions were uniformly distributed within
the 2cm x 2cm region used for learning. Note that
the random positions are generally not the same as
any of the positions used while learning. The po-
sitioning algorithm was then used to estimate the
robot’s displacement from its desired position. This
process was repeated 1000 times, each time comput-
ing the euclidean distance (error) between the robot
location after positioning and the desired location.
A histogram of positioning errors is shown in Figure
4(c). The average of the absolute positioning error



is 0.676 mm and standard deviation is 0.693 mm.
The positioning accuracy was dramatically improved
by simply using a larger number of learning images.
Figure 4(d) shows the error histogram for 21x21 =
441 learning images obtained within the same 2cm x
2cm displacement region. In this case, the learning
process was completed in approximately 30 minutes.
The average absolute error was found to be 0.151 mm
and standard deviation 0.107 mm. This reflects very
high positioning accuracy, sufficient for reliable inser-
tion of a circuit chip into its holder. This task was in
fact accomplished with high repeatability using the
gripper of the hand-eye system.

Similar experiments were conducted for the object
shown in Figure 4(e). In this case, however, three dis-
placement parameters were used, namely, z, y, and 6
(rotation in the z-y plane). During learning the x and
y parameters were each varied within a +1cm range,
and 6 within a £10deg range for each (z,y) displace-
ment. A total of 11x11x11 = 1331 learning images
were obtained and a 5-D eigenspace computed. The
parametric eigenspace representation in this case is
a three-parameter manifold in 5-D space. In Fig-
ure 4(f) a projection of this manifold is shown as a
surface (z and y are the parameters, while § = 0) in
3-D eigenspace. Again, this reduced representation is
used only for the purpose of display. The actual man-
ifold is stored in memory as a set of 65x65x65=274625
points. In this case, the entire learning process took
approximately 5 hours.

Once again, 1000 random displacements were used
in the positioning experiments. The absolute eu-
clidean positioning errors in z-y space are illustrated
by the histogram in Figure 4(g). An average abso-
lute error of 0.291 mm and standard deviation of
0.119 mm were computed. The absolute errors for
f were computed separately and found to have a
mean value of 0.56 deg and deviation of 0.45 deg.
These results again indicate high positioning accu-
racy. Figure 4(h) shows that positioning accuracy is
only marginally improved for this particular object
by doubling the eigenspace dimensionality. Here, 10
eigenvectors were computed to obtain a more descrip-
tive representation of object appearance at the cost
of additional memory usage. The positioning errors
in this case have a mean of 0.271 mm and deviation
of 0.116 mm, and the angular errors a mean of 0.44
deg and deviation of 0.33 deg. This accuracy was
verified by successful insertions of a peg in the hole
of the object.

6 Visual Tracking

The visual processing aspects of tracking are identi-
cal to that of positioning. The primary difference is

in the selection of learning parameters. In tracking
applications successive images may be assumed to be
close to one another since the manipulator is in the
process of tracking the object and hence always close
to the desired position. This implies that fewer learn-
ing samples are generally needed. For any new image
acquired the positioning algorithm is used to deter-
mine the error q. in robot coordinates. This error
may be used as input to a position control system as
shown in Figure 3. The control law may vary from
a simple PID controller to more sophisticated adap-
tive controllers that incorporate the dynamics of the
manipulator as well as delays introduced by the vi-
sual processing. The position controller generates a
reference point q, for the low-level robot actuator
controller.

IMAGE - DISPLACEMENT

MAPPING
\
[ 1 A~
ROBOT ACTUATOR CONTROL e
- CONTROLLER a LAW

Figure 3: Schematic diagram of the visual tracking
system.

7 Tracking Experiments

Figure 5(a) shows an object we have used to test the
tracking algorithm. The box illustrates the 96x96
pixel image region used for learning and tracking.
As in the previous experiment, robot displacements
were confined to three dimensions (z,y,6). A total
of 13x13x13 = 2197 images were acquired during the
learning stage by using robot displacements within
z = &£ lem, y = £ lem, § = £ 10deg. A 10-D
eigenspace was used to represent the three-parameter
manifold. A projection of the manifold (using §= 0)
in 3-D is shown in Figure 5(b).

Each cycle of the tracking algorithm involves the dig-
itization of an input image, transfer of image data
from the digitizer to the workstation, projection of
the input image into eigenspace, search for the clos-
est manifold point, computation of reference coordi-
nates using a control law, and communication of the
reference coordinates to the robot controller. In the
present implementation, all computations are done
on the Sun IPX workstation without the use of any
customized image processing hardware. The total cy-
cle time at present is approximately 250msec yielding



a control rate of 4Hz. This restricts our present ex-
periments to objects moving at relatively slow speeds
(approximately 0.5cm/sec). It may be noted that this
is merely a limitation of the current implementation.
All computations involved in the image-displacement
mapping are simple and can be easily done at frame-
rate (30Hz) with a single frame-time delay using a
more powerful workstation such as a DEC Alpha ma-
chine, or inexpensive image processing hardware such
as a standard 1860 board.

The present control law is based on a sumple inter-
polation/prediction scheme to facilitate smooth ma-
nipulator motion. The tracking accuracy was deter-
mined by moving the object at known velocity along a
circle using a motorized turntable (Figure5(a)). The
turntable was rotated through 90 deg, moving the ob-
ject through a total distance of 19 cm. In Figures5(c)-
(e) the desired and actual coordinates of the robot
are plotted as a function of time. The deviations and
lags that result while tracking are attributed mostly
to delays introduced by the vision computations and
the simple control scheme used. Our current work
is geared towards overcoming these limitations to
achieve higher tracking speeds. Also, the experiments
reported here were confined to three end-effector pa-
rameters (z,y,8). We are currently exploring exten-
sions to positioning/tracking problems that involve
more than three degrees of freedom.

8 Real-Time Object Recognition

The learning and recognition framework presented in
this paper has wide-spread applications in computer
vision. As an example, we implemented a recognition
system with 20 objects in its database (see Fig.6).
These objects vary from smoothly curved shapes with
uniform reflectance, to fairly complex shapes with in-
tricate textures and specularities. Developing CAD
models of such objects could prove extremely cumber-
some and time-consuming. Both learning and recog-
nition are done in a laboratory environment where
illumination remains more or less unchanged. In this
case, learning involves acquiring an image set of each
object by varying pose [Murase and Nayar 93). Each
object image set includes 72 learning images (5 de-
gree rotations about a stable configuration of the ob-
ject), resulting in a complete image set of 1440 im-
ages. Each object is represented by a curve in a 20-D
eigenspace parametrized by pose [Murase and Nayar
92]. The entire learning process, including, image ac-
quisition, computation of eigenvectors, and construc-
tion of appearance curves was completed in less than
12 hours using a Sun SPARC workstation.

The recognition system automatically detects signif-
icant changes in the scene, waits for the scene to sta-

bilize, and then digitizes an image. In the present im-
plementation, objects are presented to the system one
at a time and a dark background is used to alleviate
object segmentation. The complete recognition pro-
cess, including, segmentation, scale and brightness
normalization of object regions, image projection in
universal eigenspace, and search for the closest ob-
ject and pose is accomplished in less than 1 second
on the Sun workstation. The robustness of this sys-
tem was tested using 320 test images of the 20 objects
taken at randomly selected but known poses of the
objects. All test images were correctly identified by
the system. A histogram of the absolute pose er-
ror is shown in Fig.6(c); the average and standard
deviation of the absolute pose error were found to
be 1.59 degrees and 1.53 degrees, respectively. In
related work [Murase and Nayar 94], we have also
used the parametric eigenspace representation to de-
termine illumination conditions in a structured envi-
ronment that would optimize the performance of a
recognition system such as the one described above.

9 SLAM: A Software Library for
Appearance Matching

As is evident from the above results, the paramet-
ric eigenspace representation can serve as the ba-
sis for solving a variety of real-world vision prob-
lems. In view of this, we have developed the soft-
ware package SLAM [Nene et al. 94] as a general
tool for appearance learning and recognition prob-
lems in computational vision. The package is coded
in C++ and uses advanced object-oriented program-
ming techniques to achieve high space/time efficiency.
The package has four primary modules: image ma-
nipulation, subspace computation, manifold genera-
tion, and recognition. Image manipulation includes
image segmentation, scale and brightness normaliza-
tion, image-vector conversions, and provides tools for
maintaining large image databases. Subspace com-
putation, the second module, computes eigenvectors
and eigenvalues of large image sets using the method
outlined in [Murakami and Kumar 82]. The manifold
generation module can be used for projecting image
(or feature) sets to subspaces, B-spline interpolation
[Rogers 90] of subspace projections to produce mul-
tivariate manifolds, dense resampling of manifolds,
and orthogonalization of multiple subspaces. Finally,
the recognition module includes efficient search im-
plementations [Nene and Nayar 93] that find manifold
points which lie closest to novel input projections. All
four modules can be accessed via an intuitive graphi-
cal interface that has been built on X/Motif. We are
currently in the process of licensing SLAM to several
academic and industrial research institutions.
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Figure 4: Visual positioning experiment: printed circuit board. (a) Image window (white box) used for
learning and positioning. (b) Parametric eigenspace representation of the visual workspace displayed in 3-D.
Robot displacements are in two dimensions (z and y). Histograms of absolute positioning error (in mm) for
(c) 256 learning images and (d) 441 learning images. (e) Object with hole and slot. (f) Parametric eigenspace
representation displayed in 3-D. Displacements are in three dimensions (z, y, #). Histograms of absolute
positioning error (in mm) for (g) 5-D eigenspace and (h) 10-D eigenspace.
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inset). (b) Parametric eigenspace representation. Desired and actual coordinates: (c) z(t); (d) y(t); and (e)
8(t). (f) Tracking distance error d().



(a) Object set

Test images

100
80
60
40
20
Pose Error (deg.
0 (deg.) g |
0 2 4 6 8 10 12 14 16 18 X
(b) Real-time recognition (c) Pose estimation accuracy

Figure 6: Real-time recognition system: The system has 20 objects in its database, each represented as
a manifold parametrized by pose for a single stable configuration. A complete recognition and pose estimation
cycle takes less than 1 second on a Sun IPX workstation without the use of customized hardware.
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