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ABSTRACT

In this paper, we introduce some of our works contain-
ing the latest achievements in recognition of large quantities
of stored video and low-quality images to support and ex-
pand human visual capabilitiesin the context of driving. We
have applied the worksto I TS technol ogies, especially driver-
assistance and navigation systems that recognize driving en-
vironments with an in-vehicle cameraand/or other sensors.

1. INTRODUCTION

Recent years have seen great advances in the development
of ITS (Intelligent Transport Systems) technology. For exam-
ple, driver assistance and navigation with the aid of computers
and various sensors are being actively developed. In particu-
lar, in-vehicle camera images are commonly utilized, since
they contain important visual information. To support and
expand human visual capabilities, we have been developing
various pattern recognition techniques for large amounts of
stored video and low-quality images. We have also been de-
veloping applications for ITS recognition techniques as out-
lined below.

e Enhancement of car navigation systems

— Changedetection in streetscapesfrom GPS co-
ordinated omni-directional image sequences|[1]
(Section 2)

— Estimating car location by corresponding series of
multiple laser radar data[2]

— Confirming the existence of stores on an urban
map by detecting strip-like signboards [3]
o Weather recognition for driver assistance

— Raindrop detection from in-vehicle video cam-
era images for rainfall judgment [4, 5] (Sec-
tion 3)

— Visibility estimation in foggy conditions by in-
vehicle camera and radar [6] (Section 4)

o Traffic sign and signal recognition

— ldentification of degraded symbols on traffic sign
by a generative learning method [7]

— Recognition of traffic signalsin variousconditions
for safe driving assistance [8]

In this paper, weintroducethe works highlightedin bold-face.

2. CHANGE DETECTION IN STREETSCAPES

One aspect of desired ITS technology is to enhance car navi-
gation systemsin termsof offering better informationto drivers.
In these systems, navigation maps are important. However,
these need frequent updates because of streetscape changes
such as road works and new buildings. Updating a map, how-
ever, is expensive, since many people have to actually walk
through the city and collect alot of relevant information.

2.1. Approach

For quick and efficient updating of maps, we have developed
a method of automatically detecting changes in streetscapes
from omni-directional images taken from cars.

In collecting street image data, we assume that many cars
with general GPS and an omni-directional camera run freely
without purposefully collecting the data. Consequently, we
can obtain a large amount of GPS-coordinated images taken
at various times and routes with a low-cost system. We use
an omni-directional camera to efficiently capture images in
al directions from the cars. To collect position information,
high-accuracy GPS such as RTK GPS may be available, but
it does not suit our application because of its cost. Therefore,
we assume the use of a general GPS or D-GPS fitted to con-
ventional car navigation systems. Such GPS, however, has an
approximately 10-m margin of error, meaning that we can-
not correctly gather images at identical locations by simply
collecting images that have the same coordinates.

For the reasons mentioned above, we need to solve the
following three problems.

1. Accuratealignment of imagesof the samelocationfrom
images collected by freely running carsat varioustimes.
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Fig. 1. Detection of changes in streetscapes.

2. Improvement of the position information attached to
image frames.

3. Detection of changesin streetscapes from imagestaken
a varioustimes.

To deal with these issues, we have developed a novel me-
thod comprising alignment of images and calculation of the
differencebetween aligned image frames. The methodis com-
posed of two stages. The first stage accurately aligns a map
and street images taken at various times, while the second
stage detects changes in streetscapes from the aligned data.
In the first stage, we solve the first two problems. Image
frames at the same location are aligned by matching image
sequences taken along a roughly identified GPS coordinate
route. For image matching, we integrate dimension reduction
by PCA (Principal Component Analysis) and DP matching (a
matching algorithm based on Dynamic Programming), then
accurately determine the position information of each frame
by calculating average coordinatesfor thealigned images. We
call the aligned image data a Street Image Map. Then, in the
second stage, we cal cul ate the difference between aligned im-
ages taken at varioustimes to detect changesin streetscapes.

2.2. Algorithm

We collect alarge number of images with their GPS coordi-
nates, construct a Sreet Image Map, and detect changes in
streetscapes according to the processillustrated in Fig. 1.

2.2.1. Collection of images with GPS coordinates

A full implementation of this system involves many cars run-
ning freely, each with an omni-directional camera and GPS.
The omni-directional camerais attached to the top of the car
to captureimagesin all directions. Coordinatesfrom GPS are
taken in synchronization with the images.
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Fig. 2. (a) Omni-directional image, (b) Mask to extract fea
ture vectors (N =25,538), (c) Masked image.

2.2.2. Sage 1. Construction of a Sreet Image Map

Image frames determined to be at the same location from
large amounts of cityscape data are aligned accurately. We
call this a Street Image Map. Figure 1(a) shows the process.
Since the data we collect are taken by a lot of cars running
freely, we must extract image sequences taken on the same
routes, which we can distinguish with GPS coordinates. Asa
result, we can obtain images along the same route on various
dates.

Next, PCA is applied to reduce the dimensions of the fea-
ture vectors of each image frame. This makes it possible to
some extent to reduce the amount of calculation, the required
storage space, and the influence of illumination changes ac-
companied by weather changes. The feature vector isan 3V
dimension vector that has R, G, and B valuesfor pixelsinthe
masked areashownin Fig. 2, where NV isthe number of pixels
in the area. This vector is normalized so that the average of
its components should be zero and its norm, one. We limit
the areawith amask because pedestriansor other cars may be
at the edges, top, or bottom of the omni-directional images,
and they can be detrimental to accurate matching. Before re-
ducing dimensions, with PCA we create a lower-dimension
eigenspace than the feature space using various city images,
then project each frame feature vector to the eigenspace and
obtain the sequence of points {y 1, y2, -+ , ¥y, } ontheeigen-
space. Here, p isthe number of frames.

Next, we align dimension-reducedimagesframe by frame.
This is the first point of our method. By this process, it is
possible to align frames that reflect the same location at vari-
oustimes. DP matching is utilized to absorb temporal expan-
sion and contraction caused by differences of car speed and
to achieve alignment through all the images. We apply Eq. 1
below recursively to the two sequences of pointson the eigen-
space: {y1,y2, " ,¥p} ad {y},¥5, - ,y,}, and employ
Euclidean distance on the eigenspace d(i,j) = |ly: — y}||?
as the dissimilarity.

D(i—-1, j )+w-d(i,j)
D(i,j) =mins D(i—1,5 — 1) + ws - d(i,§) @
D( i ,]—1)+W3d(l,])

Here, D(1,1) = d(1,1). In an experiment, we set certain
values for wq,ws,ws. Furthermore, the sequence of frame



number pairs (7, j) chosen upto D(p, q) have been calculated
to show matches of two image frames.

The second point of our method is to average GPS coor-
dinates attached to the aligned images with the aim of obtain-
ing accurate position information. It is known that the aver-
age of the coordinates measured at a particular location for a
long time converges at the true coordinates. Based on this, it
is considered that the average coordinates are more accurate
than the collected data.

2.2.3. Sage 2: Detection of changes

It is the third point of our method to detect changes in street-
scapes from images of a specified location aligned in the first
stage. Figure 1(c) shows this process.

The aigned frames of the specified location are sorted in
order of time, namely, Py, Py, Ps, .... The dissimilarity be-
tween P, and the other frames P; (i = 1,2,...) iscalculated
by approximately adjusting their positions to reduce the in-
fluence of the car’s position in the lane. If their variance ex-
ceeds athreshold dr, we determine that thereis a change, but
if the camera catches a reflection off a large car or if image
alignment fails at certain frames, the dissimilarity will rise
temporarily. Therefore we restrain it from temporarily rising
by median-filter and Gaussian-filter smoothing over the time
sequence of the dissimilarities.

2.3. Resultsand discussion
2.3.1. Sage 1: Construction of a Sreet Image Map

First, we experimented on the construction of a Street Image
Map, confirming the accuracy of image alignment. We used
44 dataitems collected over about a year, and aligned the old-
est datawith the other data. For the alignment, we extracted a
route of about 170 m from the data, and reduced the 64,458 di-
mensions of the feature vectorsto 20 dimensions. In terms of
DP matching, the weight factor (w1, w=,ws) is(2,1,2) from
Eq. 1. Thiswas the best weight in the pilot study.

We judged the results by manual checking. If a frame
was aligned to its most similar frame, we judged it to be cor-
rect, whileif there were some frames more similar than it, we
judged it as false. We evaluated the rate of correctly aligned
framesin al frames, which resulted in an average of 94.1%.
Figure 3 shows a part of frames aligned at a certain location
ontheroute. Their standard deviation of the GPS coordinates
attached to the correctly aligned frames at that location was
6.86 m, which is assumed to be the accuracy of the GPS co-
ordinates for measurement over along time. The average of
these standard deviations over al frames was 7.98 m. The
data were collected at speeds under 40 km/h, and the frame
rate was 30 fps, so the distance between the locations of two
consecutive frames was less than 0.4 m. Thusthe average co-
ordinate has a 0.4 m margin of error in the car’s direction of
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Fig. 3. Example of aligned frames.
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Fig. 4. Example of images at change-detected locations: The
areawhere the streetscape changed significantly is marked by

dashed lines.

travel even if the alignment is correct and the position infor-
mationisaccurate. Therefore, it isassumed that if the number
of samples increases, we can converge the error of position
information to about 0.4 m in the direction of travel.

2.3.2. Sage 2: Detection of changes

We al so experimented on detection of changes using the same
datausedin Section 2.3.1. Thistime therewerefour extracted
routes, which included four major changesin the streetscapes.
Threshold d7 was set experimentally.

According to theresults, we correctly detected three chan-
ges out of four. Figure 4 shows images of the detected lo-
cations. These images reveal that there were indeed chan-
ges at the detected locations. For the remaining case, where
the change was too small even from human eyes, our method
could not distinguish a sufficiently large dissimilarity.

2.4. Conclusion

We have developed a new method that detects changes in
streetscapes from many street images taken at various times.
Experiments produced the following three results.

o Images were aligned with a high accuracy of 94.1%. It
is, therefore, possible to align images taken at the same



location at various times.

¢ GPS coordinates attached to the aligned images were
accurate to between 7 and 8 m. We confirmed that if
the alignment was accurate and we collected more data,
we could converge the error to less than 0.4 m in the
direction of travel.

¢ Three changes of streetscapes out of four were detected
from real-world data.

Futurework will include applying alarger amount of data.
We consider the Street Image Map will have various applica-
tions in addition to detection of changes, for car navigation
systems or driving simulation systems that use real-world im-

ages.

3. RAINDROP DETECTION FOR RAINFALL
JUDGMENT

Since driving in rain is more difficult than in fair conditions,
accident rates dramatically increase. Weather changes both
temporally and spatially, so we believe that it is important to
develop techniquesthat recognize weather in real time by in-
vehicle sensors for driver assistance. Actually, auto-wiping
systems are already implemented on some commercial cars
for rain recognition, controlled by a so-called “rain sensor.”
However, the target region for detection covered by the sensor
is small, so it does not necessarily reflect the changes in the
visibility from a driver’s view point. On the contrary, an in-
vehicle camera coversmost of thedriver'svisual field sinceit
targets the entire windshield.

3.1. Approach

We have previously proposed a method of detecting raindrops
from in-vehicle camera images by template matching using
the subspace method, which extracts image features of rain-
drops and judges rainfall from the detected results [4]. This
method suppresses false detection of raindropsby limiting the
target region to the sky region, which does not have complex
patterns in the background. However, it was ineffective in
cases that the ratio of sky region to the entire image is small,
such asin an urban district crowded with high buildings or in
atunnel.

Hence, we have developed a new method, using time-
series information, that does not require region restriction for
stable raindrop detection. This method includes the following
features.

1. Automatic extraction of image features of raindrops by
using PCA (Principal Component Analysis).

2. Robust detection of raindrops by using time-series in-
formation.

Raindrop
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Fig. 5. Image feature of raindrop.
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Fig. 6. Theflow for rainfall recognition.

Raindrops have a uniform shape; any drop basically ap-
pears circular when seen through awindshield, and although a
raindropitself is clear and colorless, it isvisible dueto there-
flection of its backgroundasin Fig. 5. Raindrop texturevaries
since the background refl ecting them varies. However, we be-
lieve that raindrops share at least the above features. Such
image features are automatically extracted by using PCA.

While positions of raindrops on the windshield do not
move in relation to the in-vehicle camera, the external view
changes when the car is moving[d Because of this, raindrops
are emphasized by the change of background. Taking advan-
tage of this phenomenon, we try to improve the detection ac-
curacy by focusing on the temporal change of the image with
raindrops, which is difficult to detect from a single frame due
to the influence of complex backgrounds.

3.2. Algorithm
3.2.1. Overview of the method

Asshownin Fig. 6, our method is composed of three stages:
Learning, Detection, and Judgment.
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Fig. 7. Eigendrops and their contribution rates.

3.2.2. Learning Sage

First, arectangular region circumscribing each raindrop is cut
manually as atraining set from images of awindshield taken
inrainy weather. A total of K imagesis prepared for learning.
Next, they are normalized in size to width W and height H,
represented as one-dimensional vectors, which are then nor-
malized so that they become unit vectorswith meansof O, rep-
resented as: X; = (371,372, cee ,$N)T, where N = W x H.
Let a matrix arranged by K randomly selected vectors from
the test images be X = [x1, %2, -+ ,xx] and its covariance
matrix beQ = XX Theeigenvectors{e;,e,,--- ,er} cor-
responding to the largest R eigenvalues of Q are selected as
the feature vectors. A subspace generated by these eigenvec-
tors are called “eigendrops.”

3.2.3. Detection Stage

Raindrops are detected from the test images as follows. First,
to emphasize the image features of raindrops, an averaged
image is produced from multiple sequential frames obtained
from the input video. In the averaged image, we focus on
rectangular areaswith thesize of W x H. Let the areaberep-
resented by an one-dimensional normalized vector a. Next,
we compute the degree of similarity S(a) of a with the eigen-
drops, where S(a) isdefined as S(a) = Zf;(a, er) ((xy):
inner product). The areais detected as araindrop candidate if
S(a) islarger than a threshold. The coordinates are detected
by computing S(a) throughout the frame by shifting the rect-
angular areaiin focus. Finally, raindrop regions are obtained
by frame-wise matching of the raindrop candidates.

3.2.4. Judgment Sage

Rainfall is judged by counting the number of raindrops de-
tected during the detection stage. If the number of raindrops
in the image exceeds a certain threshold, we judge that it is
rainy, and not rainy if it does not.

3.3. Experiments
331 Setup

We mounted a digital video camerain a car and took the im-
ages (30 fps, 640 x 480 pixels, grayscale). Our method was
applied to each frame of the input video sequence. Then the
recall and precision ratios for raindrop detection were calcu-
lated to evaluate the detection accuracy. In the learning stage,
the eigendrops were made from 500 raindrop images. Fig-
ure 7 shows eigendrops created from the clipped raindrops.
The subspace dimension was six when the eigendrops were
made.

3.3.2. Results

Figure 8 shows examples of raindrop detection in some ex-
perimental conditions, while Fig. 9 illustrates the recall and
precision curves. It is clear that when the number of frames
used for averaging increases, athough recall improves sig-
nificantly, precision drops somewhat. Furthermore, when the
number of frames used for frame-matchingincreases, although
precision improves, recall falls. The best result was precision
of 0.97 and recall of 0.51 when the similarity threshold was
0.70 under five-frame averaging and ten-frame matching.

3.3.3. Discussion

Precision is more important than recall in practice for awind-
shield wiper controller, since to incorrectly recognize rain-
dropsand | et the windshield wiper malfunction must be avoided.
However, it is also a problem when recall is too low. While
this result was obtained from the entire image, it was not in-
ferior to the result obtained by our previous method that re-
stricted the target region of raindrop detection to the sky re-
gion (precision = 0.97, recall = 0.59).

Sincethe successrate of rainfall judgment using the result
of raindrop detection from the sky region showed 89%, the
new method should also be able to judge rainfall similarly.

3.4. Conclusion

We have been developed a new method that detects raindrops
in background areas using inter-frame information. Exper-
imental results illustrated the method's effectiveness as fol-
lows:

e Our method could detect raindrops from an entire im-
age with high accuracy (97% precision and 51% recall)
that was almost the same as that of the previous method
using only sky regions.

e The successrate of rainfall judgment using the result of
our method is considered to be up to 89%.

In future, we will evaluate the method under variousrainy
weather situations according to time, place, and rainfall.
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4. VISIBILITY ESTIMATION IN FOGGY
CONDITIONS

Fog negatively influences human perception of traffic condi-
tions, making for potentially dangerous situations. Automatic
lighting of fog lamps, speed control, and rousing of attention
are examples of potential assistance to be realized with re-
spect to fog recognition. Under foggy conditions, it is known
that the distance between a preceding vehicle's tail lamp is
perceived to be 60% further away than under fair conditions.
Furthermore, fog changes significantly both temporally and
spatially, and as aresult there is a need for real-time detection
using in-vehicle sensors. One method that involvesinstalling
large numbers of sensors along the roads can be a solution,
though it may not accurately reflect a driver’s visual condi-
tion. It would also be avery expensive system to establish.

4.1. Approach

Considering these problems, we have developed a method
that classifies fog density into three levels using in-vehicle
cameraimages and millimeter-wave (mm-W) radar data. The

image from an in-vehicle camera reflects the driver’s visual
conditions, vital when driving. This is the prime advantage
of using an in-vehicle camera. We also evaluate the degra-
dation in visibility of images that are captured in foggy con-
ditions, especially by focusing on the change in visibility of
a preceding vehicle. It is also necessary to take into account
the distance to the targets to determine fog density, because
under the same fog condition, nearby objects are easy to see
while distant objects are not. Consequently, we use a mm-W
radar together with the in-vehicle camera since the radar can
measure distance without any negativeinfluence from adverse
weather. The method is composed of the following two steps.

1. Extract avisibility featurefrom animage of apreceding
vehicle captured by an in-vehicle camera.

2. Classify the fog density into three levels considering
the visibility feature and the mm-W radar data.

4.2. Algorithm

Figure 10 shows the method’s flow. Fog density is judged by
both the distance to the preceding vehicle and the indicator
calculated from the preceding vehicle region as follows.

4.2.1. Clipping the region of a preceding vehicle

First, preceding objects are detected in reference to the dis-
tance obtained from the mm-W radar. Moving objects are
extracted according to their relative speed with the vehicle
with an in-vehicle camera. Next, the position and size of the
preceding vehicle region are accurately detected by template
matching in the candidate area, referring to the dictionary im-
age.

The accuracy was 90.17% when this method was applied
to 4,149 images. All the images include a preceding vehicle.
At present, we only consider a specific vehicle as the preced-
ing vehicle, so a dictionary image manually cropped from a
captured image was used as a template.
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Fig. 10. Flowchart of the proposed method.

4.2.2. Evaluating the visibility indicator

We define an indicator that represents the visibility of the
preceding vehicle. When fog appears, the outline of a pre-
ceding vehicle becomes more indistinguishable than in fair
conditions because the captured images become whitish and
blurred. This is the point on which we focused. The con-
trast of images captured in foggy conditions becomes low,
and considering this in the frequency domain, we define a
visibility indicator based on the image's power spectrum.

Figure 11 shows sample images and corresponding indi-
cator values. An exploratory experiment with human subjects
was conducted to investigate the rel ation between human per-
ceptions of visibility and the indicator. From the result, we
confirmed that the preceding vehicle becomes indistinguish-
able in proportion to the decrease of the indicator value.

4.2.3. Judging fog density

Visibility-meters are often used to measure fog density. In
our work, however, we focus on the driver’s perception rather

o |
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o | [ [
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Fig. 11. Sample images and corresponding indicator values.

than absolute physical visibility measures. Our method in-
stead features three levels of fog density: dense, moderate,
and light fog conditions, where the judgment of fog density is
considered to be the classification of fog density.

The classification method is as follows. First, calculate
the regression curve that has the minimum squared error to
the training data in each class. To classify input data, the
distance between the input data and each regression curve is
measured. The input data are then classified to a class with
the nearest regression curve.

A regression curve is an exponential function referring to
Koshmieder’smodel on the deterioration of brightness. Kosh-
mieder’'smodel is represented as follows:

L=Loe ™ + L;(1—e "), )

where L is the observed luminance, L is the intrinsic lumi-
nance of an object, L is the luminance of the sky, & is the
extinction coefficient of the atmosphere, and d is the distance
to the object. Therefore, L deteriorates exponentially accord-
ing to d when £ isfixed. Assuming that the indicator deterio-
rates according to Koshmieder’s model, we use Eg. 2 for the
regression curve.

4.3. Experiments
43.1. Setup

To design the classifier, we need training data with the most
appropriate class for each image. This was done by the fol-
lowing procedure, in which we used images captured while

Table 1. Comparison of judgments by the proposed method
and by human subjects. The percentagesin diagonal elements
represent the precision rate of each class.

Subjects \ Method | Light | Moderate | Dense
Light 100 % 0% 0%
Moderate 13% 82% 5%
Dence 0% 22% 78 %




driving a vehicle. Five sets of images were tested, where one
set included ten images that had been selected randomly from
the captured ones. Four different subjects, each with avalid
driver's license, participated in the experiment. They classi-
fied theten imagesinto three classes for each set, and fromthe
result of this experiment, we obtained the appropriateclassfor
each image, which complies with human perception.

4.3.2. Evaluation method

We compared the judgments by our method and those by hu-
man subjects. In the following experiments, the test data set
was different from the training data set. The preceding ve-
hicle was always the same vehicle in the experiment and the
sky luminance was almost the same when the images were
captured. Assuming that Lo and Ly in Eq. 2 are invariables
from this, the regression curve was calculated for each class.

4.3.3. Results and Discussion

The results presented in Table 1 show the confusion matrix
for judgment by the proposed method and that by the human
subjects. The total precision rate for all classes was 85%. In
the experiment, we dealt with only one vehicle. In redity,
however, the indicator is affected by the variety in color or
shape of vehicles, though the indicator should not be affected
by these variancesfor reliable judgment of fog density. Thus,
improvement of the indicator is our next challenge.

4.4. Conclusion

We have developed a method that classifies fog density ac-
cording to a visihility feature of a preceding vehicle and the
distance to the vehicle. We obtained promising results (85%
of precision) through an experiment using data collected from
an in-vehicle camera while driving a vehicle. From the re-
sullts, we confirmed that the proposed method can make judg-
ments that comply with human perception.

In future, we will consider an improved visibility feature
that does not vary depending on the type or color of a preced-
ing vehicle. In addition, we will consider a situation where
thereis no preceding vehicle at all.

5. SUMMARY

In this paper, we have briefly introduced three works related
to application of pattern recognitionfor ITS. Future work will
involve conducting research on recognition and understand-
ing of video and images. For moredetails of our works, please
visit our website http: //mmww.murase.m.is.nagoya-u.ac.jp/.

ACKNOWLEDGEMENT

We would like to thank our colleagues and former/current students,
especially Junji Sato, Hiroyuki Kurihata, and Kenji Mori of Nagoya
University, and Dr. Yoshito Mekada of Chukyo University.

We also thank Yukimasa Tamatsu and Takayuki Miyahara of
DENSO CORPORATION for their cooperative works in Sections
3 and 4 of this paper.

Parts of the works were supported by the Grant-In-Aid for Scien-
tific Research (16300054) and the 21st-Century COE program from
the Ministry of Education, Culture, Sports, Science and Technology.

The works are developed based on MIST library, available at
http://mist.suenaga.m.is.nagoya-u.ac.jp/.

REFERENCES

[1] J. Sato, T. Takahashi, 1. Ide, and H. Murase: “Change Detec-
tion in Streetscapes from GPS Coordinated Omni-Directional
Image Sequences,” Proc. 18th International Conference on Pat-
tern Recognition, Vol. 4, pp. 935-938, Aug. 2006, Hong Kong.

[2] N. Shibuhisa, J. Sato, T. Tekahashi, I. Ide, H. Murase, Y. Ko-
jima, and A. Takahashi: “Estimating Vehicle Location by Cor-
responding Multiple Laser Radar Data Series (in Japanese),”
Technical Report of |EICE, PRMU2006-52, Jun. 2006.

[3] Y. Nekagawa, T. Takahashi, I. Ide, H. Murase, and Y. Mekada:
“Confirming the Existence of Stores on an Urban Map by De-
tecting Strip-like Signboards (in Japanese),” Proc. Meeting on
Image Recognition and Understanding, pp. 1207-1212, Jul.
2006.

[4] H. Kurihata, T. Takahashi, Y. Mekada, |. Ide, H. Murase, Y.
Tamatsu, and T. Miyahara: “Rainy Weather Recognition from
In-Vehicle Camera Images for Driver Assistance,” Proc. IEEE
2005 Intelligent Vehicles Symposium, pp. 204-209, Jun. 2005,
Las Vegas.

[5] H. Kurihata, T. Takahashi, Y. Mekada, I. Ide, H. Murase,
Y. Tamatsu, and T. Miyahara: “Raindrop Detection from In-
Vehicle Video Camera lmages for Rainfall Judgment,” Proc. In-
ternational Conference on Innovative Computing, Information
and Control, Vol. 2, pp. 544-547, Aug. 2006, Beijing.

[6] K. Mori, T. Kato, T. Takahashi, |. Ide, H. Murase, T. Miyahara,
and Y. Tamatsu: “Visibility Estimation in Foggy Conditions
by In-vehicle Camera and Radar,” Proc. International Confer-
ence on Innovative Computing, Information and Control, Vol. 2,
pp. 548-552, Aug. 2006, Beijing.

[7] H. Ishida, T. Takahashi, I. Ide, Y. Mekada, and H. Murase:
“Identification of Degraded Traffic Sign Symbols by a Gener-
ative Learning Method,” Proc. 18th International Conference
on Pattern Recognition, Vol. 1, pp. 531-534, Aug. 2006, Hong
Kong.

[8] F. Kimura, T. Takahashi, Y. Mekada, |. Ide, and H. Murase:
“Recognition of Traffic Signalsin Various Conditions for Safety
Driving Assistance (in Japanese),” Proc. Meeting on Image
Recognition and Understanding, pp. 618-623, Jul. 2006.



