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Semantic segmentation has become one of the trending topics in the world of computer vision and deep learning. Recently,
due to an increasing demand to solve a semantic segmentation task simultaneously with attribute recognition of objects, a new
task named attribute-aware semantic segmentation has been introduced. Since the task requires to handle pixel-wise object
class estimation with its attributes such as a pedestrian’s body orientation, previous works had difficulties to handle ambiguous
attributes such as body orientations in object-level, especially when segmenting the pedestrians with their attributes correctly. This
paper proposes the ColAtt-Net that is an attribute-aware semantic segmentation model augmented by a column-wise mask branch
to predict the pedestrians’ orientations in the horizontal perspective of the input image. We firmly assume that the pedestrians
captured by a car-mounted camera are distributed horizontally so that for each column of the input image, the pedestrian pixels
can be labeled with one orientation uniformly. In the proposed method, we split the output of the base semantic segmentation
model into two branches; one branch for segmenting the object categories, while the other one, as the novel column-wise attribute
branch, is to map the recognition of pedestrian’s orientations that are distributed horizontally. This method successfully enhances
the performance of attribute-aware semantic segmentation by reducing the ambiguity on segmenting the pedestrian’s orientation.
Improvements on the pedestrian orientation segmentation are confidently shown by the proposed method in the experimental
results, both in quantitative and qualitative views. This paper also discusses how the improved performance becomes an advantage
in the autonomous driving system. © 2020 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
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1. Introduction

Following scientific developments in the field of computer
vision and deep learning, semantic segmentation has become a
very hot topic discussed by researchers and practitioners. Simply
put, semantic segmentation can be interpreted as a task to classify
object categories and locate them in pixel-level of the captured
image. Its applications are very broad, covering recent develop-
ments in the fields such as satellite imagery [1], medical imaging
[2–4], robotics [5–7], and autonomous vehicle [8–12]. Various
solutions and models have been competing with each other to
become the best, such as FCN [13], SegNet [14,15] ICNet [16],
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Deeplab(s) [17–19], PSPNet [20], and many more. With the
growing needs, those existing works become conventional as
they only provide category names of the objects captured in the
image. Additional information, such as object’s attributes, which
is simultaneously presented in the semantic segmentation outcome
might give a better scene understanding. For that, recently,
we have introduced the attribute-aware semantic segmentation
task [21–23] to simultaneously collaborate semantic segmentation
and attribute recognition tasks. The study focused on a pedestrian
and its body orientations as the targeted object and its attributes.
There are two types of class in this study; ‘object’ class which
includes road , building , car , person , so on, and ‘attribute’ class
which includes four pedestrian orientations, consisting of back ,
right , front , and left . Compared to the conventional semantic
segmentation task, it improves not only the performance in
general, but also enriches the output information.

However, for classifying the pedestrian orientations in pixel-
level, the difficulty is to obtain a stable result in the orientation
segmentation. The ambiguity of pedestrian attributes in object-
level occurs when there are two or more body orientations
encountered in one pedestrian; For example, the upper and

© 2020 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.

http://crossmark.crossref.org/dialog/?doi=10.1002%2Ftee.23296&domain=pdf&date_stamp=2020-12-06


M. D. SULISTIYO ET AL.

lower body parts of a pedestrian may be segmented as different
orientations. If we observe the images captured by a car-mounted
camera as well as the reality in traffic situations, pedestrians
are typically distributed horizontally. It is unlikely that two or
more pedestrians are located vertically in spatial dimension. We
can assume that predicting a pixel-wise orientation can cause
ambiguity in some parts of the pedestrian’s body. Whereas
performing a column-wise prediction on pedestrian orientations
will be more effective to avoid the ambiguity of orientation in
one pedestrian body. With these assumptions, it is sufficient to
predict one orientation class uniformly for pedestrian pixels along
each column in the input image. This idea becomes a key basis
of the method proposed in this paper to handle the ambiguity
in segmenting the pedestrian orientations along with the object
classes simultaneously. For some applications in an autonomous
driving system, reducing the ambiguities of pedestrian orientations
recognition is very important; Thus, it becomes our concern in this
paper.

In this paper, the ColAtt-Net is introduced as a newly proposed
model for the attribute-aware semantic segmentation task. The
ColAtt-Net treats all pedestrian pixels in each column to belong
to the same orientation class. This model divides the tasks into
two parts; The first part is in charge of segmenting images into
predetermined object categories, while the second part is aimed
at predicting the orientation labels of the segmented pedestrian.
The proposed method provides advantages over another past work
[24)] that executes semantic segmentation, object detection, and
attribute recognition in a series of separated processes; the ColAtt-
Net is a multi-task learning-based model trained in an end-to-end
process to perform these three stages simultaneously in a network.
This means, the two branches of the model that perform the object
categories segmentation and the pedestrian orientations prediction
tasks are trained together with a combined loss function. In the
end, the two outputs need to be post-processed to combine them.

We conducted some experiments to optimally train the ColAtt-
Net and compare the results with the baseline method to show its
advantages, both in quantitative and qualitative views. Figure 1
exemplifies that the ColAtt-Net produces a better segmentation
as it successfully eliminates the ambiguity in segmenting the
pedestrian orientations.

To sum up, our contributions in this paper are as follows:

• We propose the ColAtt-Net as a multi-task learning frame-
work for the attribute-aware semantic segmentation task
by introducing a column-wise pedestrian orientation predic-
tion module to particularly improve the performance of an
object’s attributes segmentation.

• We provide experimental results to observe the optimal
parameters for training the ColAtt-Net model.

• We show the improvements made by the proposed method
compared to the baseline method both in quantitative metric
and in qualitative perspective.

The rest of this paper explores existing works related to this
study in Section 2 and details of the proposed methods in Section 3.
In Section 4, we show the experimental results and discuss the
advantages of the proposed method. Finally, Section 5 concludes
the paper with possible future work.

2. Related Work

2.1. Attribute recognition: Pedestrian’s orientation
In a traffic situation, many of the same traffic objects, such
as pedestrians, are captured, but show various attributes and
behaviors that may influence the development of applications
[25–27] for Intelligent Transportation Systems (ITS). Some past
studies [28–30] have conducted pedestrian attributes recognition,
but were designed for images with single-cropped condition and
captured by a surveillance camera. Among various types of
existing attributes, ‘body orientation’ is an important attribute
of a pedestrian for traffic scene understanding. For instance, for
an autonomous driving system, estimating a pedestrian’s body
orientation is required before detecting the pedestrian’s crossing
intention [31], which is important to perform further actions. For
this reason, this research focuses on optimizing the recognition of
pedestrian orientations.

2.2. Semantic segmentation In computer vision, vari-
ous techniques for interpreting an image have been developed.
The variety starts from the most global context to the more detailed
ones, including image classification, object detection, and semantic
segmentation. A computer may obtain a comprehensive vision with
the semantic segmentation as it classifies all categories of objects
covered by the image in the smallest scale, that is, pixel-level.

There are numerous datasets publicly available for the semantic
segmentation task, such as CamVid [32], KITTI [33], Mapillary
Vistas [34], Cityscapes [35,36], and so on. From there, lots
of methods and breakthroughs have born in recent years, as
some of those mentioned in Section 1. Some review papers
[37–39] summarize recent progress of the semantic segmentation.
The solutions offered are mostly segmentation models based
on Convolutional Neural Networks (CNN) and deep learning
techniques since this task requires very detailed and complex
classification capabilities.

2.3. Attribute-aware semantic segmentation With
the development of some creative ideas, such as instance segmen-
tation [40], multi-human parsing [41], and panoptic segmentation
[42], conventional semantic segmentation has become inadequate
to meet the needs of the system to be applied. Recently, attribute-
aware semantic segmentation [21] [22] is introduced as a task that
solves the increasing demand to simultaneously run the semantic
segmentation and the object’s attribute recognition. The CityWalks
dataset [43] was constructed for this task. One application is in an

Fig. 1. Comparing outputs between the previous work [22] and the proposed work that proposes ColAtt-net

296 IEEJ Trans 16: 295–306 (2021)



COLATT-NET FOR ATTRIBUTE-AWARE SEMANTIC SEGMENTATION

autonomous driving system which tries to provide a better traffic
scene understanding for purposes related to the vehicle’s motion
planner and anticipation.

In the previous works [21–23], the segmentation model pre-
dicted body orientation as the pedestrian’s attribute. However, it
is a common problem in a semantic segmentation task to seg-
ment all pixels of the input image into correct classes, including
the attribute values. The misclassification in pixel-level can cause
certain parts of a pedestrian annotated with an incorrect orien-
tation class or a different class from the other body parts. This
makes the attribute-aware semantic segmentation task face ambi-
guity because two or more different orientations appear in one
pedestrian instance. For example, the upper part of a person is
segmented as a pedestrian walking to the left, while the lower part
to the right. An existing study [44] has tried to address a simi-
lar issue but in an object detection task. This kind of problem,
especially in attribute-aware semantic segmentation task, will be
minimized in the current study.

2.4. Multi-task learning semantic segmentation
The problem of attribute-aware semantic segmentation can be
seen as a multi-task learning (MTL) framework. Basically, there
are two tasks; segmenting the object categories and segmenting
the object’s attributes, which are carried out simultaneously.
However, there are still few existing studies using the MTL
framework that address this particular problem. In our prelimi-
nary study [24], the attribute-aware semantic segmentation task
was executed in three separated conventional stages; semantic
segmentation, pedestrian detection, and attribute recognition.
Another previous work [22] introduced an MTL-based model as a
comparative method. However, the results were still not optimal;
The ambiguity in pedestrian orientation segmentation occurred
as the result of inaccuracies in the pixel-level classification.
Therefore, this paper proposes a novel method using the MTL
framework for attribute-aware semantic segmentation that can
reduce the potential ambiguity in segmenting the pedestrian
orientations.

3. Proposed Method: ColAtt-Net

This paper proposes the ColAtt-Net, an attribute-aware semantic
segmentation model based on the MTL framework that splits
the network’s output into two branches; the object category
segmentation and the column-wise prediction of pedestrian’s
attribute. Figure 2 shows the general stages in developing the
proposed model. The two output branches are trained during
the training stage to perform these two tasks simultaneously.
Meanwhile, in the testing stage, the network has two steps;
the inference step that yields two network’s outputs includ-
ing the object segmentation and the column-wise orientation
prediction, and the post-processing step which collaborates
the two inference outputs to obtain the final attribute-aware
segmentation output. Before going through the main part of the
proposed method, we introduce a preliminary investigation that
becomes the most important cue to understand the novelty in
this work.

3.1. Preliminary investigation Figure 3 displays an
output of the attribute-aware semantic segmentation by the method
in the previous work [22]. From here, we can find pixels with

Fig. 2. General view in building the ColAtt-net model

Fig. 3. Before and after applying a preliminary post-processing to
an output produced in the previous work [22]

different orientations in some parts of a pedestrian. Although
only a small part, it still causes ambiguity in recognizing the
pedestrian’s attribute in object-level. Suppose that the minor pixels
with different orientations are incorrectly classified and overwritten
with the major orientation label. In addition, since pedestrians in
the input image are assumed to be distributed horizontally, one
orientation attribute is sufficient for all pedestrian pixels in each
column of the image. Thus, we can post-process the segmentation
output by re-annotating the pedestrian pixels along each column
with the most frequent orientation predicted in the corresponding
column. This mechanism is illustrated in Fig. 3; The number of
ambiguous pixels is significantly reduced.

That condition typically occurs in the outputs of attribute-
aware semantic segmentation task, and thus, this post-processing
mechanism is applicable for general cases. Table I shows that
applying this simple method to three typical results from the
previous work [22] is capable of increasing the performance
metrics quantitatively. However, this effort may fail if the correct
orientation does not sufficiently dominate the pedestrian’s body
part in the vertical spatial dimension. Adding this simple post-
processing may even worsen the results; It depends on the output of
pixel-wise prediction of pedestrian orientations. Therefore, a model
based on the multi-task learning framework can be developed.
The segmentation model needs to be specifically trained to have
two simultaneous abilities: perform semantic segmentation for
object categories and predict the orientation for each pedestrian
as uniformly as possible.

Based on this preliminary investigation, we draw some conclu-
sions as follows:

• Applying the idea that one orientation class is sufficient
for one column of the image can be effective to reduce
ambiguity in segmenting the pedestrian orientations.

• To avoid failures, the tasks of object segmentation and
pedestrian orientation prediction can be performed simul-
taneously in a separate sub-task.

297 IEEJ Trans 16: 295–306 (2021)
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Table I. Segmentation performance with and without the preliminary post-processing mechanism

# Post-Pro. mIoU4 IoUback IoUright IoUfront IoUleft

1 No 45.63 43.23 50.95 44.11 44.24
Yes 46.71 44.70 52.60 44.59 44.96

2 No 48.71 45.91 54.17 44.55 50.222
Yes 49.64 46.89 55.41 45.08 51.18

3 No 41.01 44.19 44.53 43.93 31.37
Yes 42.48 45.26 46.19 44.19 34.29

• This encourages us to develop a multi-task learning-based
model for attribute-aware semantic segmentation task which
is trainable in an end-to-end process.

3.2. ColAtt-Net’s architecture In this study, we pro-
pose the ColAtt-Net, which stands for ‘Column-wise Attribute-
aware semantic segmentation Network’. The ColAtt-Net model is
built for the attribute-aware semantic segmentation task by intro-
ducing an augmenting column-wise orientation network branch
to enhance the performance, especially in reducing the ambigu-
ity of pedestrian orientation prediction. This method is proposed
according to the following assumptions:

• Ambiguity in segmenting the pedestrian’s orientation occurs
when two or more orientations are predicted to one pedes-
trian instance, for example, the upper and the lower body
parts of a pedestrian have different orientations.

• In the traffic scene images, pixels corresponding to each
pedestrian captured by a car-mounted camera are assumed
to be distributed horizontally.

• Two or more pedestrians can exist in the same vertical
axis if they have different distances from the camera. In
such a condition, the closer pedestrians will appear visually
dominating, and in reality, they will be prioritized for
collision prevention.

• Finally, the model only needs to predict one orientation value
for each column of the input image to sufficiently represent
all pedestrian pixels in the corresponding column.

The ColAtt-Net simultaneously divides the two tasks into object
category segmentation and pedestrian orientation prediction. The
model is trained in an end-to-end manner. As the pedestrian
pixels in each vertical axis are sufficiently represented by only
one orientation value, the ColAtt-Net puts a branch to predict the
pedestrian orientations in column-wise working parallel with the
branch that segments the object categories in pixel-level.

The conceptual approach proposed in this study is applicable to
any base model. In this study, the ColAtt-Net uses PSPNet [20]
as the base model. An extended version of PSPNet [22] was pre-
viously introduced for the attribute-aware semantic segmentation
task and trained with the CityWalks dataset [43] which contains
23 classes consisting of 19 object categories (road , building ,
car , person , etc.) and four object’s attributes (pedestrian orien-
tations, i.e. back , right , front , and left). Here, the ColAtt-Net is
proposed as a modification from the PSPNet basis, having a multi-
tasking capability that improves the extended PSPNet in running
the attribute-aware semantic segmentation task.

Figure 4 depicts the network architecture of the proposed
ColAtt-Net model. The green blocks represent the same modules
used in the base PSPNet model. It begins with some layers copied
from the ResNet-101 [45], followed by a Pyramid Pooling Module

Fig. 4. Network architecture of the proposed ColAtt-net
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(PPM), and enclosed with the segmentation output branch to yield
the main output Y 1. In addition, the model has a ‘side’ stream or a
so-called auxiliary stream that produces an auxiliary output. This
is basically adopted from the original PSPNet model [20]. The
auxiliary branch is to check the model’s performance using the
intermediary features given by the neural networks. Calculating
loss from the auxiliary output helps improve the extracted image
features in the middle of the neural networks, thus, accelerating
the learning process. This mechanism will not interfere too much
with the learning on the main stream since the auxiliary loss
will be back-propagated to only a few front layers of the model.
We extended the auxiliary branch in the proposed ColAtt-Net to
produce two auxiliary outputs; A1 represents the auxiliary output
for the pixel-wise object segmentation task, while A2 is for the
column-wise orientation prediction task. By relying only on the
main loss, a standard performance might be achievable. However,
applying the auxiliary loss with an appropriate weight could
further increase the performance of the trained model [20].

The yellow blocks show our main contributions with the
proposed ColAtt-Net. It separates the task of pedestrian orientation
prediction from the object category segmentation task by adding
the output branches for the column-wise prediction of pedestrian
orientations. These produce Y 2 at the main output and A2 at
the auxiliary output. In the segmentation branches that yield Y 1

and A1, the size of the output channel is set to 19; Each result
in a 19 × H × W tensor. Meanwhile, the column-wise prediction
branch at the main stream adopts the final and up-sample modules,
inserts a column average pooling module to shrink the size in
the vertical axis but still keeping the spatial information of the
tensor, and then adjusts the up-sample module size to yield Y 2

with the shape of 4 × 1 × W . Its channel’s size, i.e. 4, corresponds
to the number of pedestrian orientations. The same modification
is applied to the column-wise prediction branch at the auxiliary
stream that produces A2. A column average pooling module is
inserted between the adapted auxiliary and up-sample modules.
Note that these auxiliary outputs (A1 and A2) are utilized together
with the main output only in the training stage. While in the testing
stage, the ColAtt-Net uses only the main output (Y 1 and Y 2).

3.3. Converting the ground truth for training stage
The CityWalks dataset [43] provides sets of ground truths that

contain 23 classes, including 19 categories of objects (labeled
from 0 to 18) and 4 attributes of pedestrian orientations (labeled
from 19 to 22). Here, the original ground truth (G) needs to be
converted separately into a 19-class ground truth for the object
segmentation (G

′
) and a 4-class ground truth for the column-wise

orientation prediction (G
′ ′
). G is a two-dimensional matrix with

the size of H × W and contains integers ranging from 0 to 22. As
the conversion result, G

′
has the same size as G but with labels

ranging from 0 to 18 that correspond to the object categories, while
G

′ ′
is a matrix with the size of 1 × W and labels ranging from 0

to 3 that correspond to the pedestrian orientations.
First, to obtain G

′
, it is simply performed by overwriting all

orientation labels in G (19–22) with the label for the class person ,
i.e. 11. Second, to convert from G to G

′ ′
, we need to find one

orientation label that represents the target for each column in G .
The chosen orientation is the most frequent label of orientation
which is observed in a window of pixels. If two or more labels
become the most frequent orientation, then one of them is selected
randomly. In the implementation, we propose two choices of
method, ‘option 1’ and ‘option 2’. With option 1, the orientation

Fig. 5. Finding the orientations target for ground-truth G
′ ′

with
two options; all orientation labels are converted from [19, 22] to
[0.3], respectively; this is executed along the column (notated with

the dotted lines)

target is found in every single-column window, whereas with
option 2, the orientation target is found in every three-column
window. Figure 5 illustrates this mechanism in more detail.

The process of finding the most frequent orientation label is
only for pedestrian orientations classes. If there is not a single
orientation label in the window, then the corresponding column
for G

′ ′
is assigned with the ignored label (255) and hence will

not be involved in the loss calculation. From these converted
ground truths, G

′
is used to train the ColAtt-Net’s branch for the

object category segmentation task, while G
′ ′

is for the column-wise
orientation prediction task.

3.4. Calculating the loss In the training loop stage, the
ColAtt-Net considers both outputs: main and auxiliary; each yields
two sub-outputs, which are the 19-class object segmentation and
the 4-class column-wise attribute prediction. From each branch,
we calculate the respective loss using a standard cross-entropy
loss function [46]; L1 is for the object segmentation loss and
L2 is for the column-wise orientation prediction. Weights of the
loss, β1 and β2, are applied to multiply each loss, respectively.
These weights are important parameters in the training process to
determine how much the portion of each loss will be counted for
the back-propagated loss.

Lx = β1Lx
1 + β2Lx

2 ,

x ∈ {main, aux} (1)

After calculating losses for both main and auxiliary outputs, we
combine them to obtain the final loss L as formulated in Equation 2
and use it for the backward propagation; A constant of α is
applied for the auxiliary loss to balance these two losses. Figure 6
shows the function that elaborates how this loss calculation
works.

L = Lmain + αLaux (2)

3.5. Post-processing for the final output In the test-
ing stage, the ColAtt-Net only considers the main output consisting
of Y 1 and Y 2, and omits the auxiliary outputs. As previously
explained, Y 1 represents the semantic segmentation output that
contains 19 classes of object categories of which one of them is
person . Meanwhile, Y 2 predicts the pedestrian’s orientations in
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Fig. 6. ColAtt-Net’s loss calculation; cross entropy [46] is a
common loss function for neural network training

column-wise. These two outputs are then combined in the post-
processing step to yield the final output of the attribute-aware
semantic segmentation. This is realized by overwriting all pixels
classified as class person in Y 1 with the orientation class from the
corresponding column in Y 2. Other classes are not overwritten with
any orientation label. Figure 7 illustrates the post-processing mech-
anism to obtain the final output Y from the proposed ColAtt-Net.

4. Experiment and Analysis

4.1. Experimental setup All experiments in this study
used the CityWalks dataset [43] which consists of training and
validation sets. Each contains 2975 and 500 finely-annotated
images, respectively. The original size of the image is 1024 × 2048
pixels, but is resized in half per axis to 512 × 1024 pixels for
processing speed reason.

For the training stage, we set a maximum iteration (I max) of
50 000 and a batch size (b) of 4. With the total number of training
data (N train) of 2975, every training routine will approximately
run for a maximum epoch (E max) of 68. This number of epochs
follows the equation below:

Emax =
⌈

Imax × b

Ntrain

⌉
. (3)

In addition, we set α to 0.4 because it empirically yielded
optimal performance as described in the PSPNet paper [20].

To compare with the previous work, other training parameters
such as initial learning rate, learning rate decay, weight decay,

and momentum are set to 0.05, 0.9, 0.0001, and 0.9, respectively,
which are used by the baseline method [22]. For the purposes of
evaluation and observation, we analyze optimal parameters related
to the ColAtt-Net, including the training option (1 or 2) to be used
as well as the values assigned for β1 and β2.

To measure performance of each trained model on the vali-
dation set, we calculate the Intersection over Union (IoU) [21],
especially for each orientation class, and the mean IoU for 4 ori-
entations (mIoU4), for 19 objects (mIoU19), and for 22 object plus
orientation classes (mIoU22). To obtain mIoU22, class person is
substituted with four orientation classes. All scores are presented
in percentage (%).

4.2. Experimental result First, we run some experi-
ments to see which training options, between 1 and 2, is preferable
to train the ColAtt-Net model. β1 and β2 are set with default
values, which are 0.9 and 0.1, respectively. In addition, we run
for each option with batch size b of either 4 or 8. Performances
of the trained model is measured with IoU and mIoU as previ-
ously explained. Table II shows the performance comparison of
the trained models; bold numbers are the top scores over each
column. Every training setting is run once with the default I max.
From this experiment, we can see that option 2 generally performs
better than option 1 and thus, option 2 is selected as the default
training option for further experiments.

Next, an experiment is conducted to choose optimal values
for the loss weights, with β1 ∈ {0.8, 0.9, 1.0, 1.1, 1.2} and
β2 ∈ {0.1, 0.2}. β2 is set to a smaller value than β1 because the
trend shown in Fig. 8 indicates that L2 is always lower than L1.
This is to maintain the proportional influences of these losses
in training the two output branches according to their respective
tasks. The performances are measured to observe how the values
assigned to β1 and β2 influence both branches of the model’s
output, including the object semantic segmentation (represented in
mIoU19) and the column-wise orientation prediction (represented
in mIoU4 and the orientations’ IoU). Table III shows these
experimental results. We run one-time training for each pair of
β1 and β2 values with default settings for b and I max. Two scores
for each column in the table are bold, showing the top-2 ranks for
each performance metric. From the table, we can see that the pair
of (0.9, 0.1) for (β1, β2) is the best for the column-wise orientation

Fig. 7. Post-processing performed by the ColAtt-net
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Table II. Observing the training options (1 or 2)

Option B mIoU4 IoUback IoUright IoUfront IoUleft

1 4 63.43 59.95 71.01 54.80 67.95
1 8 62.76 59.18 70.12 54.78 66.95
2 4 64.22 60.21 70.17 57.08 69.42
2 8 63.43 60.41 68.26 56.53 68.52

Fig. 8. The main losses for the two tasks during the training
process; Lmain

2 is always below Lmain
1

prediction task, while to maintain the object semantic segmentation
performance, (1.1, 0.1) deserves the best pair values for (β1, β2).

We then make comparisons between the method proposed in
this study and the baseline method from the previous work as
presented in Tables IV, V, and VI. For the proposed ColAtt-Net,
three combinations for parameters β1 and β2 are chosen based on
their achieved mIoU4 and mIoU19 in Table III; (0.9, 0.1) and (1.0,
0.1) become mIoU4’s first and second ranks, respectively, while
(1.1, 0.1) and (1.0, 0.1) achieve mIoU19’s first and second ranks,
respectively. Especially for the baseline method, the parameters
β1 and β2 in Tables IV, V, and VI actually correspond to weight
parameters of βo and βa , respectively, and set with some pairs of
values assigned to the baseline method in the previous work [22].
Each of the methods with its setting is trained 10 times to analyze
the consistency of its performance.

From each method and its corresponding setting, we receive 10
performance results. Among those, first, we calculate the standard
deviations as shown in Table IV. On the table’s header, σ 22,
σ 19, σ 4, σ back, σ right, σ front, and σ left represent the standard
deviations for mIoU22, mIoU19, mIoU4, mIoUback, mIoUright,
mIoUfront, and mIoUleft, respectively. Then, we calculate the
averaged performances and show the results in Table V. Finally,
we pick one out of 10 results, which represents the best record

based on the achieved mIoU4. For instance, we train ColAtt-Net
with β1 = 0.9 and β2 = 0.1 10 times, evaluate each of the trained
models to obtain 10 records of performances, and then select the
best one based on mIoU4. All of the best records collected from
each method and setting are shown in Table VI.

From Table IV, the proposed method generally produces a lower
standard deviation than the baseline method. In Tables V and VI,
one score is highlighted (bold) in each column to show which
method gains the first rank for the corresponding performance
metric. We can see that the ColAtt-Net’s performance is slightly
below the baseline’s in segmenting the object categories as shown
in mIoU22 and mIoU19 metrics. Other than that, the ColAtt-Net
manages to excel far enough from the baseline method in terms of
the mIoU4 and the IoU of every orientation class. We investigated
some validation results in a qualitative view and found several
common cases that confirm the advantages of ColAtt-Net model
over the baseline method, which will be discussed later in the next
section.

4.3. Discussions In the first experiment, we observe the
use of training option that represents how to find the orientation
target for the ground truth, as shown in Fig. 5. The focus of
this observation is on the model’s branch for the column-wise
orientation prediction which produces Y 2 and A2. Table II indicates
that applying option 2 generally yields better results compared to
option 1, in terms of giving an accurate prediction of the pedestrian
orientations. It is shown by mIoU4 and the IoU of orientation
classes.

From this experiment, we can realize that when the model is
in the training process, especially to predict the orientation of a
pedestrian in column-level, option 1 acts stricter as it focuses to
find the target from exactly one column. Meanwhile, option 2 gives
more relaxation as it also considers its neighboring columns. It
means that option 2 has more spatial awareness, thus, it performs
better and is preferable compared to option 1.

Table III. Observing the values assigned for β1 and β2

β1 β2 Option B mIoU19 mIoU4 IoUback IoUright IoUfront IoUleft

0.8 0.1 2 4 69.77 61.72 58.63 68.17 52.90 67.18
0.8 0.2 2 4 67.28 61.59 57.26 65.36 54.59 69.16
0.9 0.1 2 4 69.91 64.22 60.21 70.17 57.08 69.42
0.9 0.2 2 4 68.23 61.01 56.73 66.51 53.64 67.15
1.0 0.1 2 4 70.27 63.11 59.38 70.00 54.70 68.34
1.0 0.2 2 4 69.37 61.92 58.37 67.84 54.23 67.242
1.1 0.1 2 4 71.22 62.57 60.35 67.69 55.75 66.50
1.1 0.2 2 4 70.19 61.49 57.83 68.55 54.37 65.21
1.2 0.1 2 4 70.09 61.84 59.33 67.94 54.20 65.89
1.2 0.2 2 4 69.80 60.11 58.29 63.63 52.95 65.58
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Table IV. Standard deviations in each performance metric from multiple training conducted for the ColAtt-net and the baseline methods;
this is particularly to confirm whether the performance of each method in several tries is stable or not

Method β1 β2 σ 22 σ 19 σ 4 σ back σ right σ front σ left

Baseline 0.1 0.9 0.56 0.64 0.76 1.17 1.85 0.68 1.61
Baseline 0.5 0.5 0.40 0.43 0.95 1.71 1.82 0.73 1.21
Baseline 0.9 0.1 0.69 0.37 3.60 1.87 8.80 2.43 7.86
ColAtt-Net 0.9 0.1 0.60 0.68 0.97 0.91 1.09 0.00 1.51
ColAtt-Net 1.0 0.1 0.72 0.82 0.96 1.43 1.98 1.41 1.21
ColAtt-Net 1.1 0.1 0.43 0.50 1.00 1.41 1.37 1.32 1.83

Table V. Comparison of the averaged performances between the ColAtt-net and the baseline methods

Method β1 β2 mIoU22 mIoU19 mIoU4 IoUback IoUright IoUfront IoUleft

Baseline 0.1 0.9 67.56 70.69 59.94 56.83 66.57 51.19 65.17
Baseline 0.5 0.5 67.50 70.89 59.33 55.29 66.59 51.04 64.39
Baseline 0.9 0.1 65.17 70.85 44.47 46.71 46.19 43.74 41.23
ColAtt-Net 0.9 0.1 67.03 69.77 62.18 59.04 67.97 54.34 67.34
ColAtt-Net 1.0 0.1 67.16 70.01 61.71 58.47 68.07 53.97 66.34
ColAtt-Net 1.1 0.1 67.42 70.23 62.03 59.28 67.85 53.83 67.16

In the next experiment, the results in Table III show that there
is a trade-off between β1 and β2 in affecting the performances of
two output branches. For β1, there are conditions when mIoU19

is increased but mIoU4 is decreased, and vise versa . Whereas for
β2, we can see that assigning it with 0.1 performs better for both
mIoU19 and mIoU4 compared to 0.2. However, we can still observe
that the pair of (1.0, 0.1) is considered optimal for (β1, β2) based
on mIoU19 and mIoU4 metrics in this experiment.

We also make comparisons between the proposed and the
baseline methods. First, Table IV indicates the stable performances
of the ColAtt-Net; All the standard deviation values are less than
2%. It is in contrast to the baseline method which may produce
a relatively higher standard deviation. This indicates that the
proposed method is more stable than the baseline method.

Next, Tables V and VI show the performance comparisons
achieved by the proposed and the baseline methods. The concen-
tration of the proposed method is divided into two sub-tasks as pre-
viously mentioned in Section 3. The ColAtt-Net’s performance is
slightly below the baseline method in the object segmentation task,
indicated by mIoU22 and mIoU19 which both involve accuracies
for the 19 object categories. In contrast, the ColAtt-Net outper-
forms the baseline method in the orientation prediction task thanks
to the additional branch for predicting the pedestrian orientations
in column-wise. The proposed method assigns an orientation label
to every pixel of person , whether the pixel is correctly or incor-
rectly labeled as so. Nevertheless, the small differences in mIoU22

and mIoU19 indicate that the ColAtt-Net struggles to maintain its
performance in the object segmentation task while increasing its
accuracy in the orientations prediction task as indicated by mIoU4

and each orientation’s IoU. This generally shows that the proposed
ColAtt-Net is able to improve the performance in predicting the
pedestrian orientations, which means eliminating the ambiguity,
without affecting the object category segmentation task too much.

Furthermore, qualitative results are investigated to confirm the
advantages of the ColAtt-Net over the baseline method in some
typical cases, shown in Fig. 9. In the figure, columns 1 and 2 show
the case of single pedestrian facing right or left, where the baseline
method outputs ambiguous orientations, while the ColAtt-Net
successfully segments all the pedestrian pixels with a correct ori-
entation. Column 3 exemplifies a common case where pedestrians
cross the road in front of the in-vehicle camera viewpoint. In this
condition, there is ambiguity in the baseline’s output as we can see
the legs of pedestrians classified in the wrong orientation. On the
other hand, the proposed ColAtt-Net can handle these conditions
well to correctly segment between pedestrians crossing to the left
and to the right. The third typical case represented in columns
4 and 5 is a group of pedestrians walking on a sidewalk in the
same direction. However, the baseline method failed to label all
pedestrians correctly. This might be due to different looks and
leg positions. Meanwhile, the ColAtt-Net had no ambiguity and
managed to label all pedestrians in the correct direction thanks to
its ability in examining the neighboring pedestrian pixels.

Table VI. Comparison of the top performances, based on the achieved mIoU4, between the ColAtt-net and the baseline methods

Method β1 β2 mIoU22 mIoU19 mIoU4 IoUback IoUright IoUfront IoUleft

Baseline 0.1 0.9 66.90 69.84 61.01 58.21 67.63 51.08 67.11
Baseline 0.5 0.5 67.93 71.21 60.77 57.64 67.92 51.89 65.65
Baseline 0.9 0.1 65.55 70.43 49.19 46.77 55.45 45.13 49.39
ColAtt-Net 0.9 0.1 67.48 69.91 64.22 60.21 70.17 57.08 69.42
ColAtt-Net 1.0 0.1 67.59 70.27 63.11 59.38 70.00 54.70 68.34
ColAtt-Net 1.1 0.1 67.61 70.13 64.10 61.27 70.18 55.34 69.62
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Fig. 9. Qualitative results and comparisons between the baseline and the proposed methods

Table VII. Observing the values assigned for the initial learning rate (μ) in training the ColAtt-net model

μ mIoU22 mIoU19 mIoU4 IoUback IoUright IoUfront IoUleft

0.025 65.01 67.62 61.96 56.71 68.55 54.01 68.58
0.01 68.25 71.02 62.86 59.35 70.09 54.27 67.72
0.005 67.48 69.91 64.22 60.21 70.17 57.08 69.42
0.0025 67.13 70.26 60.91 55.83 66.29 54.00 67.51
0.001 65.68 68.80 58.84 54.71 66.26 50.77 63.63

There is a case in column 6 where a group of pedestrians with
three different orientations are not properly segmented by both
methods. It is still difficult for the proposed method to handle
crowds of pedestrians facing various orientations. Nevertheless,
the ColAtt-Net is at least slightly better at separating pedestrians’
orientations in object-level.

All of the abovementioned examples show that, in fact,
the two methods are good at segmenting pedestrian objects, but
the ColAtt-Net outperforms the baseline method in segmenting the
pedestrian orientations. In addition, column 7 shows a case where
both methods incorrectly segmented a rider into a pedestrian. In
a condition that the cyclist is mixed with pedestrians, the two
methods are still confused.

Moreover, we try to enhance the ColAtt-Net by optimizing one
of its training parameters, which is the initial learning rate (μ).
We adjust μ to greater and smaller values, including 0.025, 0.01,
0.0025, and 0.001. For each of these values, a training process is
executed once. We take the top result from the default μ of 0.005
and (β1, β2) = (0.9, 0.1) as shown in Table VI for comparison.
From Table VII, we can see that μ of 0.01 improves the ColAtt-
Net in terms of mIoU22 and mIoU19, but still cannot surpass the
default μ in terms of mIoU4 and all orientations’ IoU. From this,
we could not find a value for μ that increases the performance
of the ColAtt-Net in general. The μ of 0.005 is still considered a
reasonable setting, particularly for the orientation classes.

The overall results in the experiments and observations show
that the ColAtt-Net proposed in this study can improve the
performance of the attribute-aware semantic segmentation tasks.
It means that the proposed method successfully reduces the
inaccuracy in segmenting the pedestrian orientations while still
maintaining the accuracy in segmenting the object categories.
By applying the ColAtt-Net to the applications related to an
autonomous driving system, the reluctance to recognize pedestrian
attributes can be drastically diminished. This is certainly important
for a computer vision technique embedded in such a system so
that it can accurately understand the traffic situation, especially
the pedestrian movement, and thereby improve anticipation and
prevention of the potential risks.

5. Conclusion

The limitations that occurred in the attribute-aware semantic
segmentation, especially in traffic conditions, have been conveyed
in this paper. Related to this, a novel model called ColAtt-Net was
proposed to overcome the ambiguity in segmenting pedestrian ori-
entations with the input images captured by a car-mounted camera.
The ColAtt-Net is a deep neural network model based on the multi-
task learning framework that simultaneously performs the two
tasks including the object categories segmentation and the column-
wise orientations prediction tasks. We also provided several
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experiments to observe the optimal parameters for training the
ColAtt-Net. It was demonstrated that the proposed method is effec-
tive to reduce the ambiguity in segmenting the pedestrian orienta-
tions in object-level, which is very important when applying to an
autonomous driving system. For future work, optimizing ColAtt-
Net’s training parameters more comprehensively can also be con-
sidered for a possible improvement to the method’s performance.
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