2020 IEEE Intelligent Transportation Systems Conference (ITSC)
Rhodes, Greece. September 20-23, 2020 (Virtual)
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Abstract—1t is intuitively obvious that eye-gaze behaviors of
experienced drivers are different from those of novice drivers.
However, it is not easy to understand the difference in their
behavior quantitatively. In this work, we present an explainable
eye-gaze behavior modeling method for electric wheelchair
drivers based on Inverse Reinforcement Learning (IRL). We
first create feature maps that represent risk factors during
driving. These feature maps are able to represent not only
to what but also from where drivers pay attention. IRL uses
the feature maps to learn the reward representing the eye-
gaze behaviors and allows us to see important features via the
automatic acquisition of the reward. Through analysis of the
learned model, we show quantitative evidence that eye-gaze
behaviors of experienced drivers are better-balanced by paying
attention to multiple risks.

I. INTRODUCTION

Since there are many traffic accidents involving personal
mobility vehicles like an electric wheelchair, the demand for
assisting their driving is increasing. It is known that while
driving a car, we obtain information more than 90 percent
from eyesight [1]. Likewise, wheelchair drivers also obtain
a lot of information from eyesight and use this information
for risk aversion. We consider that it should be effective to
understand eye-gaze behaviors that lead to the prevention
of accidents by electric wheelchairs. It is intuitively obvious
that eye-gaze behaviors of experienced drivers are different
from that of novice drivers. Therefore, we aim to analyze
the eye-gaze behaviors of experienced and novice drivers
of an electric wheelchair to quantitatively understand their
differences. Our target application is visual cognition support
for novice drivers during risky area driving.

To realize this application, a model on experienced drivers’
eye-gaze behaviors that novice drivers can understand easily
is needed. We consider that the model that explains to what
object, i.e., obstacles or pedestrians, and from where the
driver should pay attention, is efficient for this application
because only presenting the gaze distribution of an expe-

rienced driver is insufficient to allow the understanding to
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Fig. 1: Overview of our work. The collected drivers’ eye-
gaze behaviors and features that represent risk factors such
as pylons and blind corners during driving are input to IRL.
Red values are the weights learned by IRL.
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which object we should pay attention.

In order to model drivers’ eye-gaze behaviors, some works
use Convolutional Neural Networks (CNN) [2], [3], [4].
Since these models make use of end-to-end frameworks,
they cannot explain the reason for their output even if they
visually output attention maps. Thus, in this work, we model
the eye-gaze behaviors of experienced electric wheelchair
drivers by means of an explainable model, i.e., to what and
from where they pay attention.

To construct the model of eye-gaze behaviors, accurately
measured eye-gaze vectors of the drivers are needed. Some
researchers analyze eye-gaze behaviors of drivers using
cameras facing the driver [5] and eye-gaze measurement
glasses [6]. However, these measurements are limited due to
the difficulty of obtaining accurate distance information. The
information where drivers pay attention is quite important for
visual cognition support [7]. Therefore, we have previously
developed a novel platform that allows us to measure the
driver’s eye-gaze vector in the 3D space that allows us to
know from where drivers pay attention [8], and this platform
is also used in this paper.

In this paper, we make use of Inverse Reinforcement
Learning (IRL) to extract the differences of eye-gaze be-
haviors between experienced and novice drivers. Figure 1



illustrates the overview of this work. In IRL, a reward that is
used to imitate demonstrations is learned based on features
that can be manually designed [9], [10]. Here, we design
feature maps that are able to represent not only to what
but also from where drivers pay attention. IRL allows us
to see important features via the automatic acquisition of the
reward. Through analysis of learning results using IRL, we
show quantitative evidence that eye-gaze behaviors of the
experienced drivers are better-balanced by paying attention
to multiple risks.
The contribution of this work is twofold:

« Constructing an explainable model of eye-gaze behavior
using IRL.

« Describing the differences between eye-gaze behaviors
of experienced and novice drivers, i.e., to what and from
where they pay attention.

The rest of this paper is organized as follows. Section II
summarizes related work. Section III describes IRL in our
application. Section IV details an experiment and shows its
result. Finally, we conclude with a summary in Section V.

II. RELATED WORK
A. Experienced and Novice Drivers’ Eye-gaze Behaviors

It has been reported that the eye-gaze behaviors of expe-
rienced and novice drivers have some differences [11], [12],
[13]. Underwood et al. [12] showed that scanpaths in eye
movements differ between experienced and novice drivers.
They analyzed the scanpath between the subdivided regions
of a driving scene such as near-left, far-ahead, and mid-
right on the road. Van Leeuwen et al. [13] found that the
horizontal gaze variance decreases and the percentage of
gazing at the center of the road increases as drivers gain
driving experience. Pradhan et al. [11] reported that the
percentage that experienced drivers recognize risks is higher
than that of novice drivers in many situations with risks. Both
works conducted experiments on driving simulators [11],
[13]. They also considered neither to what object the drivers
gazed nor from where they gazed. In contrast, our work
models to what and from where the drivers pay attention
in an actual environment.

B. Explainable Model

Some works modeled the driver’s gaze from on-vehicle
camera images [2], [3], [4]. They used Convolutional Neural
Networks (CNN) which make them end-to-end frameworks.
Recently, explainable models are considered important to
understand the decision making of deep CNN [14]. Mori
et al. applied this to autonomous driving [15] and visually
analyzed the decision making process such as steering and
braking by predicting an attention map. Even with such
frameworks, it is difficult to know to what object and from
where we should pay attention while driving.

Drivers’ eye-gaze behaviors have often been modeled
using Hidden Markov Models (HMM) [16], which is re-
garded as an explainable model, where the hidden states
might represent the driver’s intention. However, it is still not
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Fig. 2: Definition of vertical gaze angle [7].
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easy to explain the eye-gaze behaviors by interpreting the
constructed model.

Another approach to construct explainable models is the
use of Inverse Reinforcement Learning (IRL). IRL is used
for modeling human behaviors represented by a reward to
each behavior [10], [17], [18], [19]. Activity forecasting [17]
which is extended from maximum entropy IRL [19] modeled
pedestrian trajectory and showed that humans prefer to walk
on sidewalks more than on streets. Hirakawa et al. applied
this approach to predict animal movements [10].

IRL is also used in driving situations. Wulfmeier et al.
applied IRL to path planning in driving situations [20].
Shimosaka et al. modeled risk anticipation using the velocity
of the car and show that expert drivers take brakes before an
intersection with blind corners on residential roads [9], [21].
In contrast to their work modeling risk aversion focused on
velocity, we focus on eye-gaze behaviors of drivers to model
to what and from where we should pay attention because
experienced drivers efficiently pay attention to risks using
eyesight.

ITII. IRL FOR EYE-GAZE BEHAVIOR MODELING

As shown in Fig. 1, we model the eye gaze behavior of
electric wheelchair drivers when driving at a place where
multiple risks exist. The risks anticipated in this situation
are as follows.

¢ Collision with pylons
« Collision with pedestrians running out from blind cor-
ners

A. Preliminary Analysis

We previously analyzed the eye-gaze behavior in the above
mentioned situation [7]. The result of the analysis showed
that the mean of the vertical gaze angles of experienced
drivers is higher than that of novice drivers. The definition
of the vertical gaze angle is shown in Fig. 2. To understand
this difference between experienced and novice drivers, we
analyzed to what and from where they paid attention. The
results showed that the experienced drivers paid more atten-
tion to blind corners and focused on the pylons from distant
positions for efficient risk aversion. In this work, we attempt
to construct an explainable model of such gaze dynamics
which represent to what and from where drivers pay attention
as shown in Fig. 1.



B. Model Representation with Markov Decision Process

Inverse Reinforcement Learning (IRL) is based on Markov
Decision Process (MDP). MDP is represented as M =
(S,A,P,R), where S is a finite state space, A is a finite action
space, P(s|s,a) is the probability that state s transits to state
s’ by action a, and R(s) is the reward at state s.

Ziebart et al. [19] and Kitani et al. [17] used 2D coordi-
nates as state s = (x,y) for modeling a trajectory. Generally,
path prediction methods in IRL define negative rewards
and the predicted trajectory tends to be relatively short
because it takes negative rewards as less as possible to
maximize the reward represented by the sum of negative
immediate rewards r(s). For presenting a detoured trajectory,
Hirakawa et al. extended the state to 3D coordinates as
s = (x,y,z), where z represents the discrete time step [10].
By introducing the discretized elapsed time as a variable that
represents the state, we can implicitly consider the length of
the trajectory, i.e., state transition with longer elapsed time
indicates a longer detoured trajectory. We use this maximum
entropy IRL to model the eye-gaze behavior. Here, state s
is represented as a combination of position x, vertical gaze
angle ¢, and discrete time step z, i.e. s = (x, ¢,z). Note that
the state is discretized to make use of MDP. The position is
discretized at 0.2 m intervals into thirty steps from 0.0 m
to 6.0 m, and the vertical gaze angle is discretized at 2
degrees intervals into sixty steps from —30 degrees to 90
degrees. Action « is defined as @ = (dx,d¢, 1), which is the
differential in adjacent states. A trajectory is represented as
¢ ={(s0,a0),(s1,a1),...}, where s, is the t-th state of the
trajectory. Note that the discrete time step z; =1.

C. Designing Feature Maps

In IRL, the reward that is used to imitate demonstrations
is learned based on features, which can be manually de-
signed [9], [10]. In this work, we design feature maps that
can represent not only to what but also from where drivers
pay attention.

The preliminary analysis [7] described in Sec. III-A
showed that there were some differences to what and from
where experienced and novice drivers paid attention. Based
on this result, we design feature maps considering the risk
factors and the distance from them. A feature map f(s)
consists of a driver’s position x, vertical gaze angle ¢, and
discrete time step z. First, we design the feature map f(x, )
consisting of x and ¢. Then we duplicate this along the z-
axis, i.e., f(x,¢,1) =---= f(x,9,z). The reward function R
is trained as a weighted combination of these feature maps
as described in Sec. III-D.

The feature maps for pylons are designed according to
the distance from them to model from where drivers pay
attention to each pylon. Algorithm 1 shows how to generate
feature maps for the pylon at each row. This algorithm is
applied to all rows. Each value on feature maps takes a
negative value within the range [—1,0]. If the driver’s gaze
vector with vertical gaze angle ¢ at position x hits the pylon,
the value at (x,¢) on the feature map f(x,¢) takes zero.
The values follow (normal distribution —1) along the ¢-axis
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Algorithm 1 Generating the feature map of the pylon
at each row

- - 1 2 3 4
divided_point < [07 5Xpylons 5Xpylon; 5Xpylons §xpylon;xpylon]
_ Xpylon —J

helghtdriver’ s-eye

for j in x do
Xpylon —J

if x < xpylon then
hcf:ightdriver/&eye —hc::ightpyl(m

NOrMpottom <— N(ﬂ = hitbottom)
normyep < N(1 = hityop)
for i in gaze do
if hit_angle;,, < i < hit_anglepoom then
featureli, j] < max(normpeomi|,normy,p|il)

hit_anglepoom <— arctan (

hit_angle;,, < arctan

)

else
featureli, j] < max(normpoom)
end if
normalize in [-1,0]
end for

feature[j] + (14 |divided_point — j|) X feature]j]
normalize in [-1,0]
else
feature[j] < 0.5
end if
end for
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Fig. 3: Feature maps for pylon row 3. Linear filtering is ap-
plied according to the divided points. The values at positions
farther than the pylon are fixed at 0.5 (= (min+ max)/2).

direction around the pixel on the map. Then, we divide the
distance from start to the pylon into five segments and apply
linear filtering according to the divided points. An example
of this process applied to pylon row 3 is shown in Fig. 3.
The values of the pixels on the feature map farther than the
position of the pylon take (min+max)/2 = 0.5 as shown in
the rightmost area of each map in Fig. 3. We set the height
of the driver’s eye at 1.5 m as the average of drivers.

We also prepare feature maps for blind corners as shown in
Fig. 4. These feature maps are represented as a combination
of several Gaussian kernels. These features for blind corners
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Fig. 5: Examples of feature maps with constant values for
TOWS.

are generated as f(s) = —exp(s — spc)? Y.(s — spc), where
She = [xbc,90]T is a vector corresponding to the position of
blind corners xp. and ¢ = 90. Y is the covariance matrix.
The value becomes higher as the vertical gaze angle becomes
close to zero, i.e., ¢ =0, because we look ahead when we
pay attention to blind corners while driving. As x becomes
close to the position of blind corners, the area with such high
values narrows to penalize gazes looking down on the floor
or up to the ceiling far from the pedestrian’s face or body
running out. This means that the weight of these features
decreases if the driver’s gaze shifts away from blind corners
near them. The feature maps with constant values along the
x-axis are also designed as simple basis vectors that take
fixed vertical gaze angles as shown in Fig. 5.

Finally, these feature maps f(x, ) are expanded along the
z-axis f(x,¢,z). Consequently, 29 feature maps are designed
and their breakdown is shown in Table L.

D. Inverse Reinforcement Learning

For IRL, we train a reward function. The reward is
represented as a weighted combination of features f(s)
[f1(s),-..,fx(s)]" designed in Sec. II-C, and the weight
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TABLE I: Breakdown of feature maps.

Feature map # of feature maps

Pylon row 1
Pylon row 2
Pylon row 3
Pylon row 4
Blind corner
Constant value

~N N

Total 29

vector 6.

=Y 0" f(s)).

t

=Y r(s:0) (1)
t

For maximum entropy IRL, the policy is given by m(als) o<

exp(Q(s,a) — V(s)), where value function V(s) and action

value function Q(s,a) are computed from the reward by

solving the Bellman equation [19] as follows.

V(s)

max O(s,a)
+ log [1 +exp {mam O(s,a) — max Q(s,a)H .(2)

O(s,a) = r(s;0) + Ep(y|s.q) V(). 3)

Weight vector 0 is estimated as 6 by maximizing the log-
likelihood L(0) of the probability distribution, where Z is a
set of trajectories Z = {{1,...,(,}, as follows:

ZlogP £|e).

Cez

6 = arg maxL(0) = arg max
[’]

“4)

The probability distribution with maximum entropy is given
by

exp(£, 07 /(5))
P(j) = TEE

where Z(0) is a normalizer. The exponentiated gradient
method [22] is used to update the weight with learning rate
A, as follows:

&)

i

6 « Bexp(AVL(0)), (6)
VL(6) = Z (le) |Z| Y Y F(s)De(se), (1)
ez t

where D is the expected visitation count of state s and f
is the expected emprical feature count represented as f =

‘71‘ dez (X f(s0)].
IV. EXPERIMENT
A. Experimental Setup

We conducted an experiment in an indoor environment
at Nagoya University, Japan. Fig. 6(a) shows the map of
the indoor environment. A narrow course was simulated by
placing pylons on a corridor. We analyzed the data acquired
in the green segment shown in Fig. 6(b). Fig. 6(c) shows the
layout of the pylons. As shown in Fig. 6(b), there are blind
corners on both sides.



(a) Floor map. Experiment participants drove along the red line
clockwise.

(b) Data collection segment.

(c) Layout of pylons. The elec-
tric wheelchair cannot keep
running straight when pass-
ing between pylons.

Fig. 6: Experiment course and layout of pylons [7]. Data in
the green segment were collected. The blue circles indicate
blind corners. While there were unrelated people walking in
the vicinity, only the experiment participants and collabora-
tors entered the green segment.

The electric wheelchair for acquiring driving data is shown
in Fig. 7. A LiDAR sensor!, an Inertial Measurement Unit
(IMU)?, and a motion capture device’® were attached to
it. Tobii Pro Glasses 2 was used as eye-tracking glasses
to acquire eye-gaze behavior data. We made a 3D map
with Simultaneous Localization And Mapping (SLAM) [23]
using LiDAR beforehand. Then the position of the electric
wheelchair on the map was estimated with Adaptive Monte
Carlo Localization (AMCL) [24], [25] using the 3D point
cloud acquired from the LiDAR, the 3D map and odometry
information attached from velocity, acceleration, and angular
velocity of the electric wheelchair. The 3D gaze vector in

'Velodyne HDL-32
2Xsens MTi-300-2A5G4
30ptitrack V120:TRIO
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Ey% gaze tracking glasses
with motion capture markers

Fig. 7: Electric wheelchair [8].

world coordinates was estimated by tracking spherical mark-
ers equipped to the eye-tracking glasses using the motion
capture device and the vertical gaze angle ¢ was calculated
from the gaze vector. If the collected data had the same
states s = (x,9) continuously, then the first one was kept
by removing others to ensure that a trajectory consists of a
sequence of different states s.

We measured the eye-gaze behaviors of ten participants;
male students in their twenties and were inexperienced
with driving electric wheelchairs before participating. The
data include 29 laps per each participant. An experiment
collaborator ran out in front of the electric wheelchair from
each blind corner in order to make the participants aware of
risks. The events took place twice from each blind corner on
laps 6, 12, 18, and 24. In this paper, we consider data from
laps 1-5 as novice driver data and laps 25-29 as experienced
driver data. The elapsed time was then replaced with the
number of state transitions from the beginning. We used
this as the discrete time step corresponding to approximately
0.05 s on average. Note that the experiment was conducted
after obtaining the approval of the Ethics Committee of the
University. More details are described in [7].

B. Extracted Features

The reward maps of experienced and novice drivers are
calculated as a combination of features and learned weights
as described in Eq. 1. The learned reward maps of experi-
enced and novice drivers are shown in Fig. 8. The reward
map of the novice drivers (Fig. 8(b)) shows that the vertical
gaze angle diverges near blind corners represented in dark
red. In contrast, the reward map of the experienced drivers
(Fig. 8(a)) shows that their gaze vector rises near blind
corners. These results show that we could represent the
difference between experienced and novice drivers’ eye-gaze
behaviors.
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Fig. 8: Reward maps of experienced and novice drivers. The
black lines enclose the highest value of the reward colored in
dark red. The enclosed area in the reward map of experienced
drivers is slanted upward as they approach blind corners.

-30 -30
—0.06
-10 -10 006
T 10 % g0 oo
o g
@ 30 -0 § 30 010
S S
© 50 -0.12 < 50 -0.12
70 70
-0.14 -014
0.0 4.0 0.0 4.0
x [m] x [m]
(a) Experienced (b) Novice

Fig. 9: Reward maps for pylon row 4 of experienced and
novice drivers.

Fig. 8(c) shows the reward map learning both data of
experienced and novice drivers, which was not learned well.
We consider that this is because the probability distribution
estimated by Inverse Reinforcement Learning (IRL) was
averaged by mixing different types of trajectory sets. As
another reason, we consider that the weights plunged into
a locally optimal solution.

We investigate which features contributed to these dif-
ferences. Here we focus on pylon row 4 based on our
preliminary analysis [7], as shown in Fig. 9. The reward
maps represent the weighted combination of five feature
maps for pylon row 4. The reward map of the experienced
drivers is high at around x = 4.0. In contrast, the reward
map of the novice drivers is high at around x = 5.0. Next,
we focus on the blind corners. The reward maps for the blind
corner of the two models have little difference as shown in
Fig. 10. However, the learned weight of the experienced
drivers is higher than that of the novice drivers as shown in
Fig. 11. Therefore, we can say that the experienced drivers
paid more attention to the blind corners. We consider that
they paid attention to blind corners to prepare for the risk
that a pedestrian may run out from them.

These results show that to what and from where the drivers
pay attention thanks to using the explainable model.
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Fig. 11: Learned weight of the feature map for the blind
corner.

C. Model Evaluation

We first evaluate our model in prediction accuracy. We
make use of Modified Hausdorff Distance (MHD) [26] which
is commonly used to calculate the difference between two
trajectories in IRL [9], [10], [17], [21] as an evaluation
metric. MHD is calculated as

NL Zd(a,B)

a geA

S

MHD(A, B) = max ,
No ek

d(b,A)} ()

d(a,B) = min|la —b]| )
where A = {ay,...,an,} and B = {by,...,by,} are the pre-
dicted trajectory and ground-truth trajectory of eye-gaze
behaviors, respectively. We randomly split the data into
training and testing data at a ratio of 4 to 1 to evaluate our
model. These models were tested by swapping the novice
and experienced drivers’ data. The result is shown in Table II.
The model of the experienced drivers which was tested with
the experienced drivers’ data achieved smaller mean MHD
than that with the model of the novice drivers. Also the
model of the novice drivers which was tested with the novice
drivers’ data achieved smaller mean MHD than that with the
model of experienced drivers. Thus we confirmed that our
model has a high ability to represent the eye-gaze behaviors
of experienced and novice drivers.

To model drivers’ eye-gaze behaviors by IRL, we con-
firmed that designing appropriate features that represent the
eye-gaze behaviors related to the surrounding environment is



TABLE II: Prediction accuracy in mean MHD.

| Testing data

| Experienced  Novice
.. Experienced 3.25 4.14
Training data "N ice 333 377

needed because the rewards are represented by the combina-
tion of weighted features. To represent the relationship, 3D
measurement of eye-gaze behaviors is needed. This enables
us to model from where drivers pay attention to risks.
Also, collecting trajectories with the same patterns is needed
for better training. We consider that we have successfully
modeled the eye-gaze behavior of drivers in IRL since we
satisfied the above conditions.

V. CONCLUSION

We presented an explainable modeling method of the
eye-gaze behaviors of electric wheelchair drivers based on
Inverse Reinforcement Learning (IRL). For IRL, we designed
features that represent risk factors explicitly to understand
to what and from where drivers pay attention. IRL auto-
matically chose important features to imitate the behaviors
and we analyzed the learning results, i.e., the weights for
the features. Analysis of the learned models showed that
experienced drivers tend to pay attention to blind corners
more than novice drivers while paying attention to the py-
lons. Therefore, we concluded that the experienced drivers’
eye-gaze behaviors are better-balanced by paying attention
to multiple risks.

Future work includes analyzing other situations like inter-
action with pedestrians, adopting the 3D information of the
surrounding environment, and introducing the velocity of the
electric wheelchair in the modeling.
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